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Abstract. Laboratory experiments that illustrate the fundamentals of quantum

physics are powerful teaching instruments because they re-enact thought experiments,

allowing students to think deeper about the quantum-mechanical principles involved.

Interference, wave-particle duality and entanglement are among the most important

predictions of quantum mechanics. They are abstract and counter-intuitive. More

recent concepts that help illustrate these subtleties include quantum erasure and

delayed choice. In this article we present an experiment for the undergraduate

laboratory that involves all of these issues or concepts. The experiment entails only

minor modifications to a well known setup for doing single-photon interference. In this

article we present the experiment, its results and a theoretical description.

PACS numbers: 00.00, 20.00, 42.10

Keywords : Delayed-Choice, Quantum Mechanics, Interference , Undergraduate
Laboratory Submitted to: Eur. J. Phys.

1. Introduction

Quantum mechanics, one of the most successful physical theories ever invented, has

baffled researchers since its inception. At its essence is quantum superposition or

interference. Richard Feynman called it “the only mystery” (of quantum mechanics)

[1]. Exacerbating the dilemma of interference is the generalization that matter behaves

as a wave, a subject of much discussion between Bohr and Einstein, and known as wave-

particle duality. Can we see an object behave as a wave and a particle simultaneously?

This idea has generated numerous theoretical and experimental investigations, with

always a tricky answer, that we see either one or the other but not both, yet, we

can switch from one to the other quite easily. To this Bohr attributed a principle
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of complementarity, that wave and particle are two complementary manifestations [2].

Furthermore, researchers have invoked quantum erasing [3, 4], a situation that while

illustrating the subtleties of quantum mechanics, it creates more debate due to its

counterintuitive arguments. In quantum erasing the presence or absence of interference

can be decided after the light has passed through the interference apparatus. The essence

of the phenomenon is distinguishability of paths, or the availability of path information:

if the paths are indistinguishable, then there is interference (i.e. the light exhibits wave-

like behavior); whereas if the paths are distinguishable because the path information is

available (i.e. the light exhibits particle-like behavior by taking a definite path), then

there is no interference [1]. Quantum erasing is about making the path information

available or not, regardless of when this occurs, even if it happens after the light passes

through the interferometer. As it has become commonplace in debates about quantum

physics, the reactions of disbelief are quieted by successful experimental verifications

[5, 6, 7].

In 1935 Einstein, Podolski and Rosen proposed a thought experiment (now

known as EPR) to underscore that quantum mechanics was incomplete [8]. After

communications with Einstein, Schrödinger understood a deeper situation predicted

by quantum mechanics known as entanglement [9]. Quantum entanglement refers to

the situation where two physical systems are in a state that cannot be factored into the

product of the state of the individual subparts. The two systems are intimately linked in

such a way that a measurement on one can define the state of the other one, regardless

of how far apart the systems are located, a situation that Einstein derided as “spooky

action at a distance” [10]. Beyond its intrinsic interest, entanglement has been used to

perform tests of nonlocality and realism, always confirming the predictions of quantum

mechanics [11].

Adding to the list of mind-twisters is the concept of delayed choice proposed

by Wheeler [12]. Entanglement and wave-particle duality are at the heart of this

phenomenon. The entanglement can be between two particles, but can also be an

entanglement that involves the apparatus [13]. When dealing with situations involving

entanglement, the final answer is obtained when both entangled particles are duly

measured. However, quantum mechanics does not specify when those measurements are

made. Wheeler emphasized this by explaining that the full picture of what happened in

an experiment, interference or not, wave or particle, can be decided by a measurement

on one of the entangled particles, which can be delayed to appear to define the physical

picture after it happened. Our tendency to imagine what is “reality” before we take

measurements is what gets us into trouble. Wheeler emphasized this by saying “a

phenomenon is not a phenomenon until it is an observed phenomenon” [14]. Recent

variations of the delayed choice conundrum puts the notions of “wave” and “particle”

themselves in question [15], and by investigating “intermediary phenomena” where the

quantum object is in a superposition of being a wave and a particle [16, 17, 18], i.e.,

situations where the quantum system is not entirely wave or particle.

Bohr is attributed the quote “Anyone who is not shocked by quantum theory has
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not understood it.” Apocryphal or not, the quote conveys the sentiment. Profound

and counter intuitive but yet correct, demonstrations of quantum interference and

entanglement are indisputable and unambiguous. They are even part of today’s

undergraduate laboratory [19, 20, 21, 22]. Armed by technological advances that

simplify equipment and reduce costs, such experiences have become modern additions

to the advanced undergraduate laboratory. They are compelling because they are able

to demonstrate via experiments fundamental aspects of quantum physics [23].

Delayed-choice demonstrations, ever more sophisticated, continue to this day (see

Ref. [24] for a review). In this article we describe an undergraduate-level experiment

that illustrates delayed choice by manipulating the time-energy entanglement between

two photons. Recently Ashby et al. presented a demonstration of delayed choice in

the undergraduate laboratory where entanglement in polarization was used to make a

delayed choice that decides whether the experiment records interference or not [25]. In

our experiment we manipulate the entanglement in energy. Both types of experiments

involve the generation of photons in an entangled state. One photon goes through

an interferometer while the entangled partner travels a long distance after which it

passes through a state-projection filter. The delayed character of the projection or

measurement resulting from the passage through the filter is that it occurs after the

other photon (the one going through the interferometer) has been detected. In the case

of Ref. [25] quantum erasing was performed via polarization projections that change

the quantum state to make the path information available or not [26, 27, 28]. In the

experiment presented here the projection is done by an energy filter (a narrow bandpass

optical filter), as described previously [21, 29]. Both experiments fall into the category of

quantum erasers because the action that decides the experimental outcome occurs after

the light has gone through the interference apparatus. We added the delayed-choice

aspect of the experiment by inclusion of an optical delay so that the projection occurs

after the partner photon (the one going through the interferometer) has been detected

and no longer exists. The delayed-choice component is a relatively minor addition to a

setup that is commonly used in undergraduate-lab experiments [21]. The issues that it

raises make it compelling to implement in the undergraduate laboratory.

In section 2 we present a discussion of the experiment and the apparatus. We

follow with the results in Sec. 3. We present two approaches to the explanation of

the experiment in Sec. 4. In a first one we give a simplified version that is suitable

for teaching purposes. A second one accounts for down-conversion in a more rigorous

way. In Sec. 5 we present a comparison between a larger set of experimental results and

the rigorous theory. Concluding remarks follow in Sec. 6. We have implemented this

experiment in the context of a table-top lab for a course on quantum mechanics, so in

a first Appendix (Sec. 7) we present a discussion of the experiment within the context

of an undergraduate laboratory experience. The more technical aspects of the rigorous

theory are presented in a second Appendix (Sec. 8).
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2. The Experiment

In this article we present an experiment that uses two photons, created simultaneously,

where one photon goes through an interferometer and the partner is send directly to a

detector. The interferometer is of the Mach-Zehnder type, featuring two separate arms

in a rectangular arrangement. The coincident arrival of the signals from the detection

of the two photons is recorded. As the difference in path-length between the two arms

of the interferometer is changed, so are the conditions for the interference. This type

of experiment has become a classical demonstration of some of the puzzling aspects of

superposition, that a quantum particle can interfere with itself. An important feature

of this experiment is the energy entanglement between the two photons. The outcome

of the experiment reveals that the interference of a single photon going through the

interferometer also depends on its entangled partner and how both are detected.

We used the simplest type of photon-pair generation: type-I spontaneous

parametric down-conversion (SPDC). Light from a blue-diode laser (nominally at 405

nm, but 402.8 nm in our case, with ∼50 mW of power output) was incident on a single

beta-barium-borate (BBO) crystal (5-mm×5-mm×3-mm in size), producing pairs of

down-converted photons. We selected the pairs with nearly the same energy (around

a wavelength of 805.6 nm) to exit the crystal at ±3◦. Photons were collected by

multimode fibers that sent the light to single-photon avalanche photodiode detectors

(Excelitas SPCM-EDU CD3375). These types of experiments have been described in

detail previously [30, 31].

A schematic of the apparatus that we used is shown in Fig. 1. One of the mirrors of

the interferometer was mounted on a translation stage that had a piezo-electric element

as a spacer. The micrometer of the stage was used for coarse translations of the mirror

(about 5-10 µm per “nudge” of the micrometer screw), but the piezo-electric component

was used for changing the path in small increments (about 25 nm per step). By applying

a voltage to the piezo-electric, its length was increased, pushing the translation stage

and consequently the mirror, thereby changing the length of one of the paths. This was

done sequentially by computer control producing a scan over a range of about 4 µm.

This change was small enough to not affect the alignment. In an experiment of this type,

as presented before [30], the outcome involves the observation of interference maxima

and minima as the path-length difference of the interferometer is varied, revealing that

when the two paths of the interferometer are indistinguishable, a single photon interferes

with itself [21, 29, 32].

The photons created by parametric down-conversion conserve energy and

momentum. If the energy of the incident photon is E0, then the energies of the down-

converted photons are E and E0−E. They leave the crystal in a narrow range of angles.

The collection of these photons is done through small lens collimators that channel the

light reaching them forming a small solid angle. For example, the calculated angular

difference between 830 nm and 790 nm is 7.2 arc minutes. This corresponds to 2.1 mm

at 1-m from the crystal. Within this solid angle the photons are indistinguishable by
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Figure 1. Schematic of the apparatus used. Optical elements include SPDC crystal

(BBO), non-polarizing beam splitters (BS), fixed mirror FM, movable mirror on a

translation stage (MM), fiber collimator (C), bandpass filters (F40 = 40 nm; F1 = 1

nm), avalanche photodiode detectors (DA and DB).

their energy, and so they are in the non-separable state of superposition:

|ψ〉 =
∫

C0(ω)|ω〉1|ω0 − ω〉2dω, (1)

where C0(ω) is the amplitude of producing a given pair of energies (E,E0 − E), which

we express more conveniently in terms of the angular frequency: (ω, ω0−ω), and where

ω0 = E0/~ is the angular frequency of the pump beam. Thus, the above photons are

entangled in energy, because their state cannot be separated into a product of the state

of the individual photons. This type of entanglement is inherent to down-conversion.

This entanglement in energy has been well recognized previously [29, 33], and has been

used to perform violations of Bell inequalities in time and energy [34, 35, 36]. The

time entanglement arises by the indistinguishability in the time at which the photons

were created. This is analogous to the landmark thought experiment of EPR, where

the entanglement in position and momentum is instead described in terms of time and

energy by applying k → ω/c and x→ ct [36].

A key part of the apparatus was photon collection and detection. A bandpass

filter was placed in front of the fiber collimators so that the bandwidth of the collected

photons was restricted even further. (This is standard in these types of experiments.)

This way, photon 1 went through the interferometer, passed through a bandpass filter

(F40 of bandwidth 40 nm) and a 2-m optical fiber before reaching the single-photon

detector (DB). To implement the delayed-choice aspect of the experiment we made

special additions to previous versions of the single-photon interference experiment [30].

Photon 2 traveled in free space straight to a fiber collimator lens connected to an optical

fiber. Normally this fiber would send the photons to a detector, similarly to photon 1,

but in this case we used two consecutive fibers before sending photon 2 to its detector

(DA). The first fiber was 20 m long, and was used as an optical delay. After this fiber,

the photon was relaunched into free space, to then pass through a band-pass filter, a

critical component of the experiment. Thereafter it was incident on a collimator to enter

a 2-m fiber to finally reach the detector. This can be seen in the diagram of Fig. 1.

The optical delay imposed on photon 2 made it pass through the band-pass filter
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about 90 ns after photon 1 was detected. We selected the length of fiber so that the

filtering action was made clearly after the detection of photon 1 was in form of an

electronic pulse. To record the partner photons we used an electronic coincidence unit

(Altera DE2). Because the electronic pulse from the detection of photon 2 was delayed

by the long optical fiber, we compensated it by adding a delay to the electronic signal

from the detection of photon 1. This was implemented via a 20-m coaxial cable (type

RG-58) to the path of the digital signal from detector DB, as shown in Fig. 1. Because

the propagation speed of the electronic pulse through the cable is conveniently about

2/3 the speed of light, about the same as the propagation of the light through the 20-m

fiber, we used the same length of extra electric cable for temporal compensation. We

verified that without the cable there were no photon coincidence detections beyond the

ones that occur due to the random arrival of non-partner photons (i.e., the “accidental”

coincidences). Photons arriving to the electronic unit within a time window of 40 ns

were considered a coincidence.

The interference experiments involved changing the difference in path length of

the two arms by amounts ∆L. Because knowing this value is an important aspect of

the experiments, we discuss next how we measured it. We did this by recording the

spectrum of the light from a small incandescent light bulb after it passed through the

interferometer, a technique based on the Alford-Gold effect [37], which consists of the

observation of fringes in the spectrum of broad-band light after passing through an

interferometer. We placed the bulb before the first beam splitter of the interferometer,

and placed an optical fiber after the second beam splitter of the interferometer. The

fiber channeled the light to a spectrometer (Ocean Optics 2500). The difference in

path produced a modulated spectrum, showing maxima and minima of interference. A

maximum of wavelength λ1 corresponds to an integer multiple of wavelengths, or

∆L = mλ1, (2)

where m is an integer. The adjacent maximum of longer wavelength λ2 involves one less

multiple of the wavelength, or

∆L = (m− 1)λ2. (3)

Combining Eqs. 2 and 3, we get

m =
λ2

λ2 − λ1
. (4)

yielding

∆L =
λ1λ2
λ2 − λ1

. (5)

We measured the wavelength separations between adjacent maxima to obtain ∆L.

3. Results

In our experiments the difference in path lengths had a coarse value specified by ∆L.

For each setting of ∆L we scanned the path difference further using the piezo-electric.
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This way we could see the degree of interference in the measured pattern. We started

the experiments with bandpass filters F40 on both photons, and with ∆L ∼ 0. We

verified this by adjusting ∆L such that the entire spectrum was undergoing a maximum

or minimum of interference; the equivalent to observing “white-light fringes.” We then

proceeded to increase ∆L in increments of tens of micrometers, until the interference

disappeared. For each setting of ∆L we took a white-light spectrum for determining

the value of ∆L, as described above.

A representative summary of our data is shown in Fig. 2. In panes (a), (d), (g) and

(j) we show the interference patterns taken by scanning a piezoelectric element in the

interferometer. We plot the data with uncertainties
√
N , although in all cases these are

about the size of the symbols. We fit the data with the function

f(v) = N0[1 + V cos(b0 + b1v + b2v
2 + b3v

3)], (6)

where the fitting parameters are N0, V , bi, and where v is the voltage applied by the

piezo-electric element. We did a non-linear fit of the phase because of the well-known

nonlinearity in the piezo-electric. The fitted visibilities are displayed in the upper-right

of the graphs. In panes (b), (e), (h) and (k) we show the white-light spectra, with the

path-length difference at v = 0 obtained by the spectrum fringes.

For the data of Fig. 2, both photons go through the same filters F40. Because the

degenerate wavelength (805.6 nm) was not centered on the filter pass-band (800 nm),

the effective bandwidth was δλ ∼ 27 nm. The visibility of the interference pattern was

determined by the coherence length of the light, given by [38]

ℓc =
λ2

δλ
. (7)

The light forms an energy wavepacket with a temporal width τc ∼ ℓc/c, also known

as the coherence time. For our experimental parameters the effective coherence time

corresponds to τc = 80 fs (or equivalently, ℓc = 24 µm). As ∆L was increased,

the amplitude wavepackets of the photon traveling through the two arms of the

interferometer became temporally displaced by t = ∆L/c. This provided an element

of temporal distinguishability for the paths: a which-way marker [39, 40]. As a

consequence, the visibility of the interference pattern decreased, as seen in Fig. 2. To

have a qualitative picture of the overlap of the amplitudes, in panes (c), (f), (i) and

(l) we show a calculation of Gaussian functions of full-width at half maximum of τc
separated by the time difference t, mimicking the envelope of the wavepacket.

The data set of Fig. 2 can also be viewed as a transition from wave-like behavior

when t < τc, to the particle-like behavior when t > τc. For each case correspond an

“intermediary phenomenon” between wave (∆L ∼ 0) and particle (∆L ∼ 81 µm), as

described above. Interference disappears because the paths become distinguishable in

time. An arrival-time measurement can in principle reveal unambiguously the path

taken by the light (i.e., the photon arriving earlier denoting the photon taking the short

path, and the converse). In this case, the which-way marker is t.
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Figure 2. Graphs of the interference pattern (a,d,g,j), corresponding white-light

spectra (b,e,h,k) and simulated Gaussian wave packet separation for different path-

length difference of the interferometer ∆L, shown as inserts (uncertainties were of the

order of 5%). Panes (a,b,c), (d,e,f), (g,h,i), (j,k,l) are sets with the same experimental

parameters. Symbols are measured data with values given by the left side of the graphs.

The solid line is the least squares fit to the data, with the right-side scale giving the

probability obtained from the fits.

A change in the bandwidth of the filter would alter the conditions of the interference.

The above picture works as long as the two photons are identical, so the physics of the

phenomenon is focused on the photon going through the interferometer. However, we

can exploit the energy entanglement of the light and change the bandwidth of the filter
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of photon 2, which is not going through the interferometer [21, 29]. Because coincidences

are recorded, this effectively changes the bandwidth of light showing the interference.

We then applied Wheeler’s delayed-choice argument: the passage of photon 2 through

the filter occurred well after photon 1 had been detected, introducing an apparent causal

contradiction. However, this is consistent with the predictions of quantum mechanics,

as discussed below.

In Fig. 3(a) we show the pattern obtained after replacing the filter on photon 2 with

one with a bandwidth of 1 nm (F1). This was taken after the scan of Fig. 2(j), which

corresponds to ∆L = 81 µm. Decreasing the bandwidth made the effective coherence

time about 27 times larger: τc ∼ 2.1 ps (or equivalently ℓc ∼ 640 µm). We display the

equivalent change in the width of the photon wavepacket pictorially in Fig. 3(b). It can

be seen that the new bandwidth reveals much overlap. So much that the paths become

mostly temporally indistinguishable. Thus, we can say that the path information was

erased, as manifested by the reappearance of interference fringes seen in Fig. 3(a).

Because the narrower filter restricted the number of recorded photons, the coincidence

rate decreased by about a factor of 16. We note that the wavepackets that we depict

are two-photon wavepackets.

Figure 3. Graph of (a) the interference pattern, and (b) the simulated Gaussian

wave packet envelope separation for a path-length difference of the interferometer of

∆L = 81 µm but with photon 2 going through filter F1. The data are represented

by symbols and values are given by the scale on the left side of the graphs, with the

right-side scale giving the probability obtained from the fits. The solid line is the

least-squared fit to the data with The fitted visibility was V = 0.76± 0.05.

4. Theory

The experiment described above presents a picture that at first appears troubling. How

can a measurement determine the degree of interference after the light going through

the interferometer has been detected? The problem with this argument is that we are

assigning a reality to a situation where quantum mechanics does not specify a definite
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reality. From the quantum mechanics perspective there is no problem: the reality can be

undefined. This situation brings relevance to Wheeler’s statement cited earlier regarding

the observation of a phenomenon. Our classical intuition leads us to assign a reality to a

phenomenon before it is completely measured. We are going to describe the theoretical

explanation at two levels: a semiquantitative one, and another one that accounts the

source of photons in a more rigorous way.

4.1. A Simple Model

We begin with the wavefunction of Eq. 1. Photon 1 goes through the interferometer.

Let us assume that there are no losses, so the interferometer can be represented by the

unitary operator Û acting on photon 1. The coefficients of reflection and transmission

of the beam splitters are i/
√
2 and 1/

√
2, respectively. The path-length difference of the

arms of the interferometer ∆L results in a difference in arrival time t of the light taking

the two paths of the interferometer. After the interferometer the state of the photons

is to within an overall phase, and as of yet unnormalized, given by

|ψ′〉 = Û |ψ〉 = 1

2

∫

C0(ω)(1 + eiωt)|ω〉1|ω0 − ω〉2dω. (8)

After the interferometer photon 1 goes through the bandpass filter with transmission

function C1(ω). Photon 2 has a longer trip through the 20-m fiber, after which it

reaches the bandpass filter with transmission function C2(ω). Detectors following the

filters complete the energy-projection measurement into states

|ψ′〉i =
∫

Ci(ω
′)|ω′〉idω′ (9)

i = 1, 2. Thus, passage through the two filters projects the state as

|ψ′′〉 =
∫

C1(ω
′)|ω′〉1〈ω′|1dω′

∫

dω′′C2(ω
′′)|ω′′〉2〈ω′′|2

∫

dωC0(ω)Û |ω〉1|ω0 − ω〉2.(10)

Orthogonality of the energy eigenstates is expressed as

〈ω′|ω〉1 = δ(ω′ − ω) (11)

and

〈ω′′|ω0 − ω〉2 = δ(ω′′ − ω0 + ω), (12)

which leaves the unnormalized state of the light as

|ψ′′〉 =
∫

dω C(ω)Û |ω〉1|ω0 − ω〉2. (13)

where

C(ω) = C0(ω)C1(ω)C2(ω0 − ω). (14)

The frequency (or energy) eigenstates used above are similar to the position and

momentum eigenstates used by wave mechanics in problems such as the particle in

a box. They constitute a convenient continuous basis, but they do not imply that

the photons are in an energy eigenstate of infinitesimal width [41, 42]. Analogous to
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looking for the probability of finding the particle in a region of the space within the

box, we measure the energy of the photons by the filtering action, which involves a

frequency/energy measurement over a finite bandwidth.

The final probability then becomes

P =
1

4

∫

|C(ω)|2
∣

∣(1 + eiωt)
∣

∣

2
dω, (15)

=
1

2

∫

|C(ω)|2 [1 + cos (ωt)] dω, (16)

The relevant part of Eq. 16 is indeed the energy function C(ω), which determines

whether the integral becomes a harmonic variation with the time difference t, or

a constant due to a wide range of energies involved. However, this probability is

independent of when the measurements are performed. The order of the measurements

is immaterial because they apply to the distinct energy subspaces of the two photons.

Let us illustrate the answer for a simple case to understand the two extremes of

this problem. Suppose C(ω) is given by:

|C(ω)|2 =
{

1/(ω2 − ω1) ω1 ≤ ω ≤ ω2

0 otherwise
(17)

This is a flat-top bandwidth. In this case the integral is straightforward to solve giving

P =
1

2

(

1 +
sinα

α
cosωt

)

, (18)

where α = ∆ωt/2, with ∆ω = ω2 − ω1, and ω = (ω1 + ω2)/2. Note also that

α =
πt

τc
=
π∆L

ℓc
. (19)

Thus, when t ≪ τc (or equivalently ∆L ≪ ℓc) we have sinα/α → 1, so the probability

is

P =
1

2
(1 + cosωt) , (20)

which corresponds to interference that varies with the time difference t. As ∆L increases

to the limit when ∆L≫ ℓc, results in α → ∞ or sinα/α → 0; the interference disappears

and the probability becomes

P = 1/2. (21)

4.2. A More Rigorous Theory Incorporating the Down-Converted Photon Source in the

Experiment

4.2.1. Overview The previous discussion gives the quantum probabilities for “wave”

(Eq. 20) or “particle” (Eq. 21), which can be associated to Fig. 2a and Fig. 2j

respectively. After normalization, they depend on the relation between ℓc and ∆L.

However, this can be improved in order to predict the other intermediate observed

probabilities Fig. 2d and Fig. 2g and predict also the visibility of all patterns (included

the one found after erasure, Fig. 3a).
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First, we summarize the main concepts and definitions related to the interference,

filtering and counting of the biphoton or entangled pair of photons we used in

the experiment; then we find the quantum probabilities as a function of both the

spectral bandwidth of the filters (related to ℓc) and the optical path difference in the

interferometer ∆L. As a consequence, these probabilities are modulated by a Gaussian-

like amplitude. This modulation is precisely the visibility observed in the patterns. The

mathematical prerequisites of this new model, although a little bit more sophisticated,

follow the same conceptual steps as the previous one. It is suitable for an introductory

quantum optics course.

4.2.2. Counting Rate, Joint Spectral Amplitude and Biphoton State The patterns in

Fig. 2 relate coincidence counts with smooth displacements in the path difference of

the arms of the interferometer. In quantum optics, these coincidence counts Rc are

proportional to the second-order correlation function G(2) through [43]:

Rc ∝
∫

T

dt1dt2G
(2)(~r1, t1;~r2, t2)

=

∫

T

dt1dt2|〈0|Ê(+)
2 Ê

(+)
1 |ψ〉|2. (22)

Where G(2) carries the information of where and when the coincidence takes place. More

specifically, it is about the coincidence of fields arriving to the detectors. E
(+)
µ accounts

for the field operators at the positions (~rµ, tµ) of the detector µ (µ = 1, 2). As in the

simple model, “1” and “2” are the indices labeling the photons. E
(+)
1 represents the

field operator for the detector outside the interferometer, whereas E
(+)
2 is the operator

for the detection of the photon that does not go trough the interferometer. They are

given by

Ê
(+)
1 (tT , tR) = t̄1r̄2

∫

dω1â(ω1)e
−iω1tT + r̄1t̄2

∫

dω1â(ω1)e
−iω1tR , (23)

and

Ê
(+)
2 (t2) =

∫

dω2â(ω2)e
−iω2t2 , (24)

where t̄µ and r̄µ represent the transmission and reflection amplitudes for each beam

splitter, and tT is the time of flight through the transmission branch and tR is the time

of flight through the reflection branch. â(ωµ) are the annihilation operators for photon

µ.

In the expressions above we account for the detection aspect. On the production

side, the joint spectral amplitude (JSA) for the pairs of photons produced in the Type-

I-SPDC process can be described in a general way using the expression [44]:

Φ(Ω1,Ω2) = N exp

[

−(Ω1 − Ω2)
2

4σ2
−

− (Ω1 + Ω2)
2

4σ2
+

]

, (25)

where Ωµ = ωµ −ω0
µ, is the detuning for each photon µ (µ = 1, 2), N is a normalization

factor, and σ+ and σ− depend on the experimental details of the SPDC process [45].
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In the experiment we are considering Gaussian-interference filters in front of the

detectors. To model such filters, we are going to introduce the functions fµ(Ωµ) ∝

exp
[

−Ω2
µ/4σ

2
µ

]

(these are the C(ω′
µ) functions of the previous model). Thus, the filtered

JSA takes the form

Φ̃(Ω1,Ω2) = N f1(Ω1)f2(Ω2) exp

[

−(Ω1 − Ω2)
2

4σ2
−

− (Ω1 + Ω2)
2

4σ2
+

]

. (26)

With this, a more complete representation the state of the biphoton in Eq. 1 after the

filters is

|ψ〉SDPC =

∫

dω1dω2Φ̃(ω2, ω1)â
†
2(ω2)â

†
1(ω1)|0〉. (27)

Here, â†(ω) are the creation operators of photons 1 and 2 acting on the vacuum state

|0〉. The final step involves putting the production and detection parts together into

Eq. 22. The end result for the coincidence detection probability is:

P =
1

2
(1 + V cosω0

1t), (28)

where the visibility V depends on experimental bandwidths and on the path length

difference. It is given by

V = exp

[

− γ t2

4(αγ − β2)

]

, (29)

and where α, β and γ depend on the bandwidth of the filters, the wavelength of the

photons, and the bandwidth of the pump photons in the SPDC process. As mentioned

at the beginning of this section, Eq. 28 not only reproduces the results already obtained

by the qualitative model, i.e., the “wave” behavior (with V=1, which gives Eq. 20)

and the “particle” behavior (with V=0, which gives Eq. 21); but also the intermediate

phenomena, such as V = 0.71 in Fig. 2d, V = 0.43 in Fig. 2g and V = 0.76 in Fig. 3a,

with the latter corresponding to the recovered interference after the delayed-choice

erasure. Importantly, we stress that the visibility of the interference of photon 1 is

now a function of ℓc and ∆L. The details of how V is obtained are presented in Sec. 8.

5. Comparison of Experiment with Theory

Figure 4 shows a graph summary of all of the measurements. We took data with the 40-

nm filters by increasing ∆L up to about 81 µm, as described earlier. As this was done,

the measured visibility decreased gradually to zero, as seen in the figure. A first data

set (diamonds) was taken without delayed choice (i.e., without optical and electronic

delays). At ∆L = 81 µm we changed the filter on photon 2 to 1-nm bandwidth and the

interference reappeared (large circle, corresponding to an average of 4 measurements),

as shown by a dramatic jump in the visibility. We also took data by placing the 1-nm

filter on the photon that traveled through the interferometer, and observed the same

result. The conclusion is that it does not matter where we put the 1-nm filter. This is

because the recorded interference is that of a two-photon state.
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Figure 4. Graph of the visibility. Small symbols (blue diamonds and green circles)

correspond to data taken with both filters of the same bandwidth. The large round

red circle corresponds to the narrow filter placed on the photon not going through the

interferometer. The large purple triangle corresponds to placing the filter after the

optical delay in the path of the photon not going through the interferometer. Solid

line is the calculation of the visibility by the rigorous theory.

We then switched to the delayed-choice situation (i.e., adding the optical and

electric delays), mentioned above, and measured similarly high visibility (the triangle in

Fig. 4). Subsequently we put back the broad filters and reduced ∆L keeping the delayed

choice components in place. This is shown in the second set of data in the figure (small

triangles). These data are also consistent with the data taken as ∆L was increased

with no delayed choice. Finally, we have repeated the experiment several times in

different order and with different configurations (including one where photons traveled

in opposite directions while on free space), and obtained similar results. These included

several instances where students did the experiment (including setup and alignment) as

part of teaching laboratories in 2018 and 2019.

The solid line shown in the graph is the visibility function V of Eq. 29 by using

t = ∆L/c when both photons 1 and 2 were filtered with F40. As can be seen, the

model is in excellent quantitative agreement with the measurements. Figure 5 shows

the dependence of the calculated V with the bandwidth of the filter on photon 2

(solid line), when ∆L was fixed at 81µm. The theory for V takes into account the

effective bandwidth due to the difference between the filters’ center wavelength and the

degenerate wavelength of the down-converted photons. This is the configuration when

erasure takes place. We show the data with the two corresponding filters.
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Figure 5. Visibility as a function of the bandwidth σ2 of the filter on photon 2

before and after erasure, using F40 and F1, respectively, for fixed ∆L = 81µm. The

solid line is the visibility given by Eq. 29, whereas the symbols are the experimental

measurements corresponding to the two filters used.

6. Discussion and Conclusions

From the results presented above we are left with the conclusion that the interference

pattern in this experiment cannot solely be attributed to a single photon. It is

the interference of two photons, even though only one photon goes through the

interferometer. Even if we are convinced of the notion of entanglement, and that “spooky

action at a distance” indeed occurs we face another dilemma: what spooky action is

there if the photon affected by it no longer exists? What does the projection on second

photon do? It would not make sense to think that the action on one photon can affect

the other into the past. The resolution is quite typically quantum-mechanically agnostic.

The signal from first photon going through the interferometer and the wide-bandwidth

filter is recorded. The wave-particle information is stored in the temporal dependence

of the data. That is already a projection of the initial state of the light produced by

the source. The measurement on the second photon going through the filter of variable

bandwidth provides a temporal filtering action of the events when both photons are

detected. The choice of filter selects from the data that is already present electronically,

and thus determines the degree of interference or wave-particle character that is seen in

the jointly measured data. The theoretical description from above tells us that the way

to understand quantum mechanics is to avoid visualizing situations that have not been

defined by measurements, and following Wheeler, accepting that a phenomenon is not

such until it is measured.

In conclusion, we present an addition to the undergraduate experiments on the

interference of photons produced by parametric down-conversion to involve quantum



A Time-Energy Delayed-Choice Interference Experiment for the Undergraduate Laboratory16

erasure and delayed choice. These features are possible due to the energy entanglement

that is present in down-conversion. The selection of filters on a delayed detection of a

photon can determine whether one sees interference or not after the entangled partner

photon has passed through an interferometer and been detected. It is an experiment

that illustrates the challenging concepts of quantum erasure and delayed choice. The

experiments are undoubtedly striking. Our intuition is classical, so we have to work

hard at learning how to interpret quantum nature despite of our intuitive tendencies.

Perhaps that is what makes the experiments powerful in teaching, because they falsify

misconceptions. We can be dissuaded by theory or simulation, but there is nothing more

convincing and tangible than nature itself.

Acknowledgments

We thank B. Khajavi and J.A. Jones for help useful discussions and C.H. Holbrow for

valuable feedback. This work was funded by NSF grant PHY-1506321.

References

[1] Feynman R P, Leighton R B and Sands M, The Feynman Lectures on Physics (Addison-Wesley,

Reading, 1965) V. 3.

[2] Bohr, N, 1928 The quantum postulate and the recent development of atomic theory Nature 121

580
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7. Appendix: Educational Implementation

The outcomes of these and other experiments can be used to reach a deeper

understanding of quantum physics. We are fortunate that technology has advanced

to the point that undergraduates can do these experiments and grapple with the same

issues that the professors do. Thus, it is a learning experience, for both! As mentioned

earlier, there is a set of entangled-photon experiments that can now be set up on an

optical breadboard (as small as 2-ft×5-ft) using optical and hardware components that

do not cost more than $1500 per item. At Colgate University we have a lab portion of

an upper-level course on quantum mechanics. We have six experiments, and students

set up and align each in the course of one or two weekly 3-4 hour sessions, and do

the experiments in the following week. We instituted this method of alignment and

experimentation in our offering in 2018. Details of these are available on our website

[31]. Student feedback was overwhelmingly positive, as students appreciated building

an apparatus from scratch and then making striking experimental verifications. That is,

they did it all, with no laboratory magic performed by the professor or a sophisticated

machine.

Regarding the delayed-choice experiment specifically, there are already several

experiments described in earlier publications that involve single-photon interference with

heralded photons [21, 30]. These experiments can easily and inexpensively be converted

into delayed-choice experiments. The additional components are listed in Table 1. We

added the least expensive commercial fiber spectrometer, which may already be in use

for alignment of single-photon experiments, but which is a critical measurement device in

these experiments. Very importantly, the additions do not make the experiment harder.

They involve some alignments, but these are minor compared to the ones involved setting

up the single-photon interference apparatus.

We wish to note one technical difficulty that we experienced in the course of the

experiments. It involves the bandwidth of the filters. One could encounter these

difficulties easily, so it is important to be aware of them. The most convenient choice of

pump laser is the popular gallium-nitride blue diode laser. They are set to a nominal

wavelength of 405 nm. One can obtain them at very low cost: from $20 laser pointers

to current-control modules for about $300. However, the wavelength of these lasers

can easily vary within a range of 10 nm. The nominal wavelength of down-converted

photons is 810 nm, but then the variation in the source can signify a 20-nm variation.

The bandpass filters that one can purchase off-the-shelf have a center wavelength that
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Table 1. Components that are needed to expand a heralded photon experiment to

delayed choice.

Component Vendor Model Price (US$)

20-m multimode fiber Thorlabs Mater. Res. Express 286

20-m coaxial RG-58 cable Mouser 115101-19-M20.0 51

1-nm filter centered at 810 nm Andover 810.0/1.0-53343 345

Fiber collimator Thorlabs F220FCB 145

Mirror mount Thorlabs KM100T 64

Mounting accessories Thorlabs AD11F, SM1D12,MB175,TR3,RA90 148

Fiber Spectrometer Vernier VSP-EM 800

can be chosen to be either 800 nm or 810 nm. Thus, one can encounter a situation where

the degenerate wavelength of the down-converted photons is outside the band-pass of

the filters. If that is the case, in the experiment one will record photon counts at the

other nearby wavelengths but no coincident detections, because one member of a pair is

always blocked. We experienced such a situation before. In the case presented here, the

degenerate wavelength was not centered about the bandpass of the filters, 40 nm. Thus

only a fraction of the photons passing through the filters were partners. This realization

and additional measurements led us to conclude that the effective bandwidth of the pairs

(i.e., from Eq. 14) was 27 nm. Our recommendation is that users make measurements

of the pump laser wavelength before purchasing the filters so that the appropriate ones

are acquired. A measurement of filter transmission curves is in any case needed to

determine the effective bandwidth. This is easily done by placing the filter in between a

broadband source (e.q., incandescent bulb) and the spectrometer input. Alternatively,

a more expensive laser option (between $6000 and $7000) allows one to specify the exact

wavelength, in modules with greater stability and temperature control.

8. Appendix: Explicit Derivation of the Coincidence Counts

In order to obtain P in Eq. 28, we start by finding the wave function of the biphoton

in the time integral Eq. 22. Considering the interferometer structure, we have that

Ê
(+)
1 = Ê

(+)
T + Ê

(+)
R , and with this we have

〈0|Ê(+)
2 Ê

(+)
1 |ψ〉 = 〈0|Ê(+)

2 Ê
(+)
T |ψ〉+ 〈0|Ê(+)

2 Ê
(+)
R |ψ〉

= ΨT (tT , t2) + ΨR(tR, t2), (30)

which in turn gives,

|〈0|Ê(+)
2 Ê

(+)
1 |ψ〉|2 = |ΨT |2 + |ΨR|2 + 2ℜ(Ψ∗

TΨR), (31)

where the last term, 2ℜ(Ψ∗
TΨR) specifies the interference. The amplitude through the

“T” path is

ΨT (t
T
1 , t2) = 〈0|

{
∫

dω′
2â(ω

′
2)e

−iω′

2
t2

}{

i

2

∫

dω′
1â(ω

′
1)e

−iω′

1
tT
1

}

|ψ〉 (32)
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=
i

2

∫

dω′
1dω

′
2dω1dω2Φ̃(ω1, ω2)e

−iω′

2
t2e−iω′

1
tT
1 × (33)

× 〈0|â(ω′
2)â(ω

′
1)â

†(ω1)â
†(ω2)|0〉 (34)

=
i

2
e−i(ω0

2
t2+ω0

1
tT
1
)

∫

dΩ1dΩ2e
−iΩ2t2e−iΩ1t

T

1 Φ̃(Ω1,Ω2), (35)

where the simplification of the intermediate integral was done by using the commutation

relation [â(ω), â†(ω′)] = δ(ω − ω′), and also by introducing the detuning variable

Ωµ = ωµ − ω0
µ, µ = 1, 2, and factoring the constant terms. Another simplification

can be done on the last integral by taking into account that t and Ω are conjugated

variables. Indeed, this integral can be solved by the application of the double Fourier

transform:

ΨT (t
T
1 , t2) =

i

2
e−i(ω0

2
t2+ω0

1
tT
1
)F(t2,tT1 ){Φ̃(Ω1,Ω2)}, (36)

where F(t2,tT1 ){Φ̃(Ω1,Ω2)} is the previous mentioned Fourier transform of the JSA.

Analogously, for the reflected component R we have:

ΨR(t
R
1 , t2) =

i

2
e−i(ω0

2
t2+ω0

1
tR
1
)F(t2,tR1 ){Φ̃(Ω2,Ω1)}; (37)

and for the interference term:

Ψ∗
TΨR =

1

4
e−iω0

1
(tR

1
−tT

1
)F ∗

(t2,tR1 ){Φ̃(Ω1,Ω2)}F(t2,tT1 ){Φ̃(Ω1,Ω2)}. (38)

To obtain the explicit form of the JSA of the Eq. 26, we replace the functional form

of the filters

Φ̃(Ω1,Ω2) = N exp
[

−αΩ2
1/2 + βΩ1Ω2 − γΩ2

2/2
]

, (39)

where α, β and γ are [45]

α =
1

2

(

1

σ2
−

+
1

σ2
+

+
1

σ2
1

)

, (40)

β =
1

2

(

1

σ2
−

− 1

σ2
+

)

, (41)

γ =
1

2

(

1

σ2
−

+
1

σ2
+

+
1

σ2
2

)

. (42)

Looking again at Eq. 22, the next step is to integrate in time the square amplitudes we

have just found. Starting with the non-interfering terms ξ = R, T in Eqs. 36 and 37, we

get

|Ψξ(t
ξ
1, t2)|2 =

1

4

(

N
√

αγ − β2

)2

exp

[

−αt
2
2 + 2βt2t

ξ
1 + γtξ21

(αγ − β2)

]

(43)

whose time integral is
∫

dtξ1dt2|Ψξ(t
ξ
1, t2)|2 =

πN 2

4
√

αγ − β2
≡ R0, (44)

whereas the interference contribution gives
∫

dt1dt2|Ψ∗
T (t

T
1 , t2)ΨR(t

R
1 , t2)| = R0 exp

[

− γ t2

4(αγ − β2)

]

, (45)
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where t = tT1 −tR1 is the time delay due to the path difference in the interferometer arms,

∆L = ct.

The final step to obtain Rc is to sum the non-interfering terms and the interfering

one (Eq. 44 and Eq. 45) which appears in Eq. 31:

Rc = 2R0 + 2 cosω0
1tR0 exp

[

− γ t2

4(αγ − β2)

]

(46)

= 2R0

(

1 + cosω0
1t exp

[

− γ t2

4(αγ − β2)

])

(47)

= 2R0

(

1 + V cosω0
1t
)

, (48)

where we have used the relation ℜ(eiω0

1
t) = cosω0

1t appearing in Eq. 38. After

normalization, the coincidence rate Rc becomes the quantum probability of Eq. 28.


