Mathcad sheet to calculate the compensation of the two type-I crystals for entanglement. E. J. Galvez Last edit 2012
$\mathrm{nm}_{\mathrm{nm}}:=10^{-9} \cdot \mathrm{~m} \quad$ um $:=10^{-6} \cdot \mathrm{~m}$

$$
\mathrm{fs}:=10^{-15} \cdot \mathrm{~s}
$$

Wavelength of the pump

$$
\lambda_{\mathrm{p}}:=405 \cdot \mathrm{~nm} \quad \lambda_{\mathrm{p} 2}:=408 \cdot \mathrm{~nm}
$$

Wavelength of the degenerate down-converted photons $\quad \lambda_{\mathrm{dc}}:=2 \cdot \lambda_{\mathrm{p}} \quad \lambda_{\mathrm{dc}}=810 \cdot \mathrm{~nm}$

$$
\lambda_{\mathrm{dc} 2}:=2 \cdot \lambda_{\mathrm{p} 2} \quad \lambda_{\mathrm{dc} 2}=816 \cdot \mathrm{~nm}
$$

Index of refraction of BBO

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{O}}:=2.7359 \quad \mathrm{~B}_{\mathrm{O}}:=0.01878 \quad \mathrm{C}_{\mathrm{O}}:=-0.01822 \quad \mathrm{D}_{\mathrm{O}}:=-0.01354 \quad \text { Kato IEE } \\
& \mathrm{A}_{\mathrm{e}}:=2.3753 \quad \mathrm{~B}_{\mathrm{e}}:=0.01224 \quad \mathrm{C}_{\mathrm{e}}:=-0.01667 \quad \mathrm{D}_{\mathrm{e}}:=-0.01516
\end{aligned}
$$

Note : Different people use different constants. The differences are small but visible.
Ordinary index of refraction: Extraordinary index of refraction:
$\left.\mathrm{n}_{\mathrm{o}}(\lambda):=\left[\mathrm{A}_{\mathrm{o}}+\frac{\mathrm{B}_{\mathrm{o}}}{\left(\frac{\lambda}{\mu \mathrm{m}}\right)^{2}+\mathrm{C}_{\mathrm{o}}}+\mathrm{D}_{\mathrm{o}} \cdot\left(\frac{\lambda}{\mu \mathrm{m}}\right)^{2}\right]^{\frac{1}{2}} \quad \mathrm{n}_{\mathrm{e}}(\lambda):=\left[\mathrm{A}_{\mathrm{e}}+\frac{\mathrm{B}_{\mathrm{e}}}{\left(\frac{\lambda}{\mu \mathrm{m}}\right)^{2}+\mathrm{C}_{\mathrm{e}}}+\mathrm{D}_{\mathrm{e}} \cdot\left(\frac{\lambda}{\mu \mathrm{m}}\right)^{2}\right]^{\frac{1}{2}}\right]^{2}$

Extraordinary index of refraction when the electric field is not strictly parallel to the optic axis:
$\mathrm{n}_{\mathrm{pe}}\left(\theta_{\mathrm{pm}}, \lambda_{\mathrm{p}}\right):=\left(\frac{\cos \left(\theta_{\mathrm{pm}}\right)^{2}}{\mathrm{n}_{\mathrm{o}}\left(\lambda_{\mathrm{p}}\right)^{2}}+\frac{\sin \left(\theta_{\mathrm{pm}}\right)^{2}}{\mathrm{n}_{\mathrm{e}}\left(\lambda_{\mathrm{p}}\right)^{2}}\right)^{\frac{-1}{2}} \quad \begin{aligned} & \text { The phase-matching angle } \theta_{\mathrm{A}} \mathrm{pm} \text { is the one } \\ & \text { formed by the wave-vector and the optic axis. }\end{aligned}$
$\mathrm{n}_{\mathrm{o}}\left(\lambda_{\mathrm{dc}}\right)=1.661 \quad$ index of DC photons $\quad \mathrm{n}_{\mathrm{e}}\left(\lambda_{\mathrm{p}}\right)=1.568 \quad$ index of pump with no phase matching
$\mathrm{n}_{\mathrm{pe}}\left(29 \cdot \operatorname{deg}, \lambda_{\mathrm{p}}\right)=1.66 \quad$ index of pump with phase matching (phase-matching angle already known)
$\lambda_{\mathrm{i}}\left(\lambda_{\mathrm{s}}\right):=\left(\frac{1}{\lambda_{\mathrm{p}}}-\frac{1}{\lambda_{\mathrm{s}}}\right)^{-1}$
Wavelength (in vacuum) of the idler DC photon when the wavelength of the signal photon has been defined.

Wavevectors allowing for the doen-converted photons to be non-degenerate
$\mathrm{k}_{\mathrm{p}}\left(\theta_{\mathrm{pm}}\right):=\frac{2 \cdot \pi \cdot \mathrm{n}_{\mathrm{pe}}\left(\theta_{\mathrm{pm}}, \lambda_{\mathrm{p}}\right)}{\lambda_{\mathrm{p}}} \quad \mathrm{k}_{\mathrm{s}}\left(\lambda_{\mathrm{s}}\right):=\frac{2 \cdot \pi \cdot \mathrm{n}_{\mathrm{o}}\left(\lambda_{\mathrm{s}}\right)}{\lambda_{\mathrm{s}}} \quad \mathrm{k}_{\mathrm{i}}\left(\lambda_{\mathrm{s}}\right):=\frac{2 \cdot \pi \cdot \mathrm{n}_{\mathrm{o}}\left(\lambda_{\mathrm{i}}\left(\lambda_{\mathrm{s}}\right)\right)}{\lambda_{\mathrm{i}}\left(\lambda_{\mathrm{s}}\right)}$
$\theta_{\mathrm{i}}\left(\theta_{\mathrm{pm}}, \lambda_{\mathrm{s}}\right):=\operatorname{acos}\left(\frac{\mathrm{k}_{\mathrm{p}}\left(\theta_{\mathrm{pm}}\right)^{2}-\mathrm{k}_{\mathrm{s}}\left(\lambda_{\mathrm{s}}\right)^{2}+\mathrm{k}_{\mathrm{i}}\left(\lambda_{\mathrm{s}}\right)^{2}}{2 \cdot \mathrm{k}_{\mathrm{p}}\left(\theta_{\mathrm{pm}}\right) \cdot \mathrm{k}_{\mathrm{i}}\left(\lambda_{\mathrm{s}}\right)}\right)$
Angle **inside the crystal** that the idler wave-vector forms with the pump, for given phase-matching angle
$\theta_{\mathrm{i}}\left(29.1 \cdot \mathrm{deg}, \lambda_{\mathrm{dc}}\right)=1.812 \cdot \mathrm{deg}$
$\theta_{\mathrm{i}}(29.1 \cdot \mathrm{deg}, 820 \cdot \mathrm{~nm})=1.793 \cdot \mathrm{deg}$ and wavelength of the idler.
$\theta_{\mathrm{i}}^{\prime}\left(\theta_{\mathrm{pm}}, \lambda_{\mathrm{s}}\right):=\operatorname{asin}\left(\mathrm{n}_{\mathrm{o}}\left(\lambda_{\mathrm{i}}\left(\lambda_{\mathrm{s}}\right)\right) \cdot \sin \left(\theta_{\mathrm{i}}\left(\theta_{\mathrm{pm}}, \lambda_{\mathrm{s}}\right)\right)\right) \quad$ Angle that the idler forms outside the crystal.
$\theta_{i}^{\prime}\left(29.1 \cdot \operatorname{deg}, \lambda_{d c}\right)=3.01 \cdot \operatorname{deg}$

Small calculation: if the collimator has an acceptance angle of 2 mm (at 1 m from crystal), what wavelength range does it accept?

$$
\Delta \theta_{\mathrm{coll}}:=\frac{2}{1000} \quad \Delta \theta_{\mathrm{coll}}=0.115 \cdot \mathrm{deg}
$$

$\theta_{i}^{\prime}(29.1 \cdot \mathrm{deg}, 906 \cdot \mathrm{~nm})-\theta_{\mathrm{i}}^{\prime}\left(29.1 \cdot \mathrm{deg}, \lambda_{\mathrm{dc}}\right)=0.112 \cdot \mathrm{deg}$

Thus the collimation has an effective bandwidth of about 100 nm

Another small calculation: what extra crystal tilt will get our desired DC photons out of range of the collimator acceptance angle?
$\theta_{i}^{\prime}\left(29.14 \cdot \operatorname{deg}, \lambda_{d c}\right)-\theta_{i}^{\prime}\left(29.1 \cdot \operatorname{deg}, \lambda_{d c}\right)=0.139 \cdot \operatorname{deg}$

A tenth of a degree makes a difference (0.04 deg in the calculation) --tuning the crystal is critical.

Now we solve for the phase-matching angle
For collinear down-conversion

$$
\theta_{\mathrm{pm} 0}:=\operatorname{root}\left(\mathrm{n}_{\mathrm{pe}}\left(\theta_{\mathrm{pmz}}, \lambda_{\mathrm{p}}\right)-\mathrm{n}_{\mathrm{o}}\left(\lambda_{\mathrm{dc}}\right), \theta_{\mathrm{pmz}}, 0,90 \cdot \mathrm{deg}\right) \quad \theta_{\mathrm{pm} 0}=28.673 \cdot \mathrm{deg}
$$

For down-conversion at $+/-3$ degrees

$$
\theta_{\mathrm{pm} 3}:=\operatorname{root}\left(\mathrm{n}_{\mathrm{pe}}\left(\theta_{\mathrm{pmz}}, \lambda_{\mathrm{p}}\right)-\mathrm{n}_{\mathrm{o}}\left(\lambda_{\mathrm{dc}}\right) \cdot \sqrt{1-\frac{\sin (3 \cdot \mathrm{deg})^{2}}{\mathrm{n}_{\mathrm{o}}\left(\lambda_{\mathrm{dc}}\right)^{2}}}, \theta_{\mathrm{pmz}}, 0,90 \cdot \mathrm{deg}\right) \quad \theta_{\mathrm{pm} 3}=29.097 \cdot \mathrm{deg}
$$

For the second wavelength:
$\theta_{\mathrm{pm} 32}:=\operatorname{root}\left(\mathrm{n}_{\mathrm{pe}}\left(\theta_{\mathrm{pmz}}, \lambda_{\mathrm{p} 2}\right)-\mathrm{n}_{\mathrm{o}}\left(\lambda_{\mathrm{dc} 2}\right) \cdot \sqrt{1-\frac{\sin (3 \cdot \operatorname{deg})^{2}}{\mathrm{n}_{\mathrm{o}}\left(\lambda_{\mathrm{dc} 2}\right)^{2}}}, \theta_{\mathrm{pmz}}, 0,90 \cdot \mathrm{deg}\right) \quad \theta_{\mathrm{pm} 32}=28.893 \cdot \mathrm{deg}$
$\theta_{\mathrm{i}}\left(\theta_{\mathrm{pm} 3}, \lambda_{\mathrm{dc}}\right)=1.806 \cdot \mathrm{deg} \quad$ double - check: DC angle inside the crystal
$\theta_{\mathrm{i}}^{\prime}\left(\theta_{\mathrm{pm} 3}, \lambda_{\mathrm{dc}}\right)=3 \cdot \operatorname{deg} \quad$ double - check: DC angle outside the crystal

Now we need to compensate for the temporal mismatch when we use two type-! crystals for entanglement. Since we assume that the photons are wavepackets, we need to find group velocities.

$$
\mathrm{dl}:=5 \cdot \mathrm{~nm}
$$

$$
\operatorname{dnedl}(1):=\frac{-\mathrm{n}_{\mathrm{pe}}\left(\theta_{\mathrm{pm} 3}, 1-\mathrm{dl}\right)+\mathrm{n}_{\mathrm{pe}}\left(\theta_{\mathrm{pm} 3}, 1+\mathrm{dl}\right)}{2 \cdot \mathrm{dl}} \quad \operatorname{dnodl}(\mathrm{l}):=\frac{-\mathrm{n}_{\mathrm{o}}(1-\mathrm{dl})+\mathrm{n}_{\mathrm{o}}(1+\mathrm{dl})}{2 \cdot \mathrm{dl}}
$$

$$
\operatorname{dnedl}\left(\lambda_{\mathrm{dc}}\right)=-2.654 \times 10^{4} \frac{1}{\mathrm{~m}} \quad \operatorname{dnodl}\left(\lambda_{\mathrm{dc}}\right)=-2.959 \times 10^{4} \frac{1}{\mathrm{~m}}
$$

group velocity indices
$\operatorname{neg}(\lambda):=\mathrm{n}_{\mathrm{pe}}\left(\theta_{\mathrm{pm} 3}, \lambda\right)-\operatorname{dnedl}(\lambda) \cdot \lambda \quad \operatorname{nog}(\lambda):=\mathrm{n}_{\mathrm{o}}(\lambda)-\operatorname{dnodl}(\lambda) \cdot \lambda$
Group velocity Indices for different wavelengths

$$
\begin{array}{lll}
\text { Wavelength } & \text { ne*-dne*dl। } & \text { no }- \text { dnodl I } \\
\begin{array}{lll}
\lambda_{\mathrm{p}}=405 \cdot \mathrm{~nm} & \operatorname{neg}\left(\lambda_{\mathrm{p}}\right)=1.739 & \operatorname{nog}\left(\lambda_{\mathrm{p}}\right)=1.777 \\
\lambda_{\mathrm{dc}}=810 \cdot \mathrm{~nm} & \operatorname{neg}\left(\lambda_{\mathrm{dc}}\right)=1.653 & \operatorname{nog}\left(\lambda_{\mathrm{dc}}\right)=1.685 \\
\lambda_{\mathrm{p} 2}=408 \cdot \mathrm{~nm} & \operatorname{neg}\left(\lambda_{\mathrm{p} 2}\right)=1.737 & \operatorname{nog}\left(\lambda_{\mathrm{p} 2}\right)=1.775 \\
\lambda_{\mathrm{dc} 2}=816 \cdot \mathrm{~nm} & \operatorname{neg}\left(\lambda_{\mathrm{dc} 2}\right)=1.653 & \operatorname{nog}\left(\lambda_{\mathrm{dc} 2}\right)=1.685 \\
\mathrm{c}=2.998 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} & &
\end{array}
\end{array}
$$

$\mathrm{d}:=0.5 \cdot \mathrm{~mm} \quad$ Crystal thickness

$$
\Delta t\left(\lambda_{\mathrm{p}}\right):=\frac{\mathrm{d}}{\mathrm{c}} \cdot \operatorname{nog}\left(\lambda_{\mathrm{p}}\right)-\frac{\mathrm{d}}{\mathrm{c}} \cdot \operatorname{neg}\left(2 \lambda_{\mathrm{p}}\right)
$$

time lag between the two DC pairs
The delay is due to the mismatch of pump photons traveling as ordinary polarized in the first crystal and down-converted photons traveling as extraordinary. Strictly speaking we need to account the phase-matching angle, but will neglect that because it will be a small correction.

$$
\Delta t\left(\lambda_{p}\right)=207.293 \cdot f s \quad \text { time delay between photon pairs } \quad \Delta t\left(\lambda_{p 2}\right)=204.375 \cdot f s \text { for } \lambda_{-} 2
$$

The coherence length is

$$
1_{c}(\lambda, \Delta \lambda):=\frac{\lambda^{2}}{\Delta \lambda}
$$

so the wavepacket width is

$$
\Delta \mathrm{t}_{\mathrm{wp}}(\lambda, \Delta \lambda):=\frac{\mathrm{l}_{\mathrm{c}}(\lambda, \Delta \lambda)}{\mathrm{c}}
$$

$1_{c}\left(\lambda_{d c}, 40 \cdot \mathrm{~nm}\right)=16.403 \cdot \mu \mathrm{~m} \quad 1_{c}\left(\lambda_{d c}, 10 \cdot \mathrm{~nm}\right)=65.61 \cdot \mu \mathrm{~m} \quad$ Useful information for interferometers: the path length difference between the two arms has to be less than I_c

If the bandwidth of the pump photon is or much worse if the bandwidth is larger $\quad \Delta \lambda_{p:}:=6 \cdot n m \quad$ then $\quad \Delta t_{w p}\left(\lambda_{p}, \Delta \lambda_{p}\right)=91.188 \cdot \mathrm{fs}$
This is much greater than the delay between the down-converted photons.
We need to precompensate for the temporal distinguishability with a quartz crystal
Interpolating data from www.sciner.com web page in quartz.org we get:

$$
\begin{array}{ll}
\mathrm{n}_{\mathrm{oq}}(\lambda):=9.46503 \cdot 10^{-9} \cdot\left(\frac{\lambda}{\mathrm{~nm}}\right)^{2}-3.47588 \cdot 10^{-5} \cdot \frac{\lambda}{\mathrm{~nm}}+1.56023 & \mathrm{n}_{\mathrm{oq}}\left(\lambda_{\mathrm{p}}\right)=1.54770519 \\
\mathrm{n}_{\mathrm{eq}}(\lambda):=9.65822 \cdot 10^{-9} \cdot\left(\frac{\lambda}{\mathrm{~nm}}\right)^{2}-3.57864 \cdot 10^{-5} \cdot \frac{\lambda}{\mathrm{~nm}}+1.56984 & \mathrm{n}_{\mathrm{eq}}\left(\lambda_{\mathrm{p}}\right)=1.55693
\end{array}
$$

$$
\mathrm{dl}:=5 \cdot \mathrm{~nm}
$$

$$
\begin{array}{rlr}
\operatorname{dneqdl}(\mathrm{l}):=\frac{\mathrm{n}_{\mathrm{eq}}(1+\mathrm{dl})-\mathrm{n}_{\mathrm{eq}}(1-\mathrm{dl})}{2 \cdot \mathrm{dl}} & \operatorname{dnoqdl}(1):=\frac{\mathrm{n}_{\mathrm{oq}}(1+\mathrm{dl})-\mathrm{n}_{\mathrm{oq}}(1-\mathrm{dl})}{2 \cdot \mathrm{dl}} \\
\mathrm{n}_{\mathrm{eqg}}(\lambda):=\mathrm{n}_{\mathrm{eq}}(\lambda)-\operatorname{dneqdl}(\lambda) \cdot \lambda & \mathrm{n}_{\mathrm{oqg}}(\lambda):=\mathrm{n}_{\mathrm{oq}}(\lambda)-\operatorname{dnoqdl}(\lambda) \cdot \lambda
\end{array}
$$

Compensating crystal thickness:

$$
\mathrm{d}_{\mathrm{q}}\left(\lambda_{\mathrm{p}}\right):=\frac{\Delta \mathrm{t}\left(\lambda_{\mathrm{p}}\right) \cdot \mathrm{c}}{\mathrm{n}_{\mathrm{eqg}}\left(\lambda_{\mathrm{p}}\right)-\mathrm{n}_{\mathrm{oqg}}\left(\lambda_{\mathrm{p}}\right)}
$$

$\Delta t\left(\lambda_{\mathrm{p}}\right)=207.293 \cdot \mathrm{fs} \quad$ I note that this is consistent with the results of Rangarajan, Goggin and Kwiat OE 17, 18920 (2009): for d=0.6mm they find 253 fs and we do too using Kato's indices, but find 249 with Eimerl.

$$
\mathrm{d}_{\mathrm{q}}\left(\lambda_{\mathrm{p}}\right)=6.488 \cdot \mathrm{~mm} \quad \mathrm{~d}_{\mathrm{q}}\left(\lambda_{\mathrm{p} 2}\right)=6.397 \cdot \mathrm{~mm}
$$

