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1 Theory

In this lab we are going to study the ultimate quantum mechanical object: two-particle
entanglement. We have already worked with entangled states and manipulated them in
the delayed-choice experiment. Here we will bring the topic of entanglement in a more
direct way. It is ironic that Einstein in trying to prove quantum mechanics wrong thought
out this marvelous situation, which Schrodinger later called entanglement. Two particles
are entangled when their wavefunctions cannot be factorized. However, when we make a
measurement on one particle, it instantaneously defines the state of the other particle. At
least, that is quantum mechanics says...

1.1 State Production

In this lab we will create photon pairs entangled in polarization. If we denote the polar-
ization states of a photon, horizontal and vertical, as |H〉 and |V 〉, respectively, then the
photon pairs that we created in previous labs would be in the state

|ψi〉 = |V 〉1|V 〉2. (1)

This state is called a “product state” because the wavefunction of the pair is the product
of the wavefunctions of the two particles.

The state of the two photons can be put in matrix form as

|ψi〉 =

(
0
1

)
⊗
(

0
1

)
=


0
0
0
1

 (2)

As we have seen before, a polarizer projects the state of the light into the direction of the
transmission axis of the polarizer. If the polarizer is rotated an angle θ relative to the
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horizontal, then the polarizer eigenstates of transmission are

|θ〉 =

(
cos θ
sin θ

)
(3)

Thus, if we decide to measure the two photons with polarizers set to angles θ1 and θ2,
as shown in Fig 1, then effectively the photons are projected into the state

|ψp〉 = |θ1〉|θ2〉 =

(
cos θ1

sin θ1

)
⊗
(

cos θ2

sin θ2

)
=


cos θ1 cos θ2

cos θ1 sin θ2

sin θ1 cos θ2

sin θ1 sin θ2

 . (4)

Figure 1: Down-conversion production of photons pairs and their detection with polarizers.

The probability of joint detection (i.e., of detecting both photons past the polarizers)
is the square of the probability amplitude of being in state |φp〉

Pp = |〈ψp|ψi〉|2. (5)

The polarization state of the down-converted light that we created in previous labs
was due to a pump beam that was horizontally polarized incident on an appropriately
oriented crystal. By adjusting the crystal we can have down-converted pairs at 804 nm
come out forming an angle with the incident direction, as shown in Fig 1. If we change
the polarization of the pump to vertical we would not get down-conversion. However, if we
rotate the crystal by 90◦ we get horizontally polarized pairs.

A few years ago Paul Kwiat (U. Illinois) came up with a clever trick: to put two thin
down-conversion crystals back to back but rotated by 90◦ with respect to each other. He
then sent a pump beam polarized at 45◦ to the pair of crystals, as shown in Fig. 2. This way
the horizontal component of the pump polarization produces vertically polarized pairs with
one crystal and the vertical component produces horizontally polarized pairs with the other
crystal. If crystal thickness is smaller than the beam width, then there is no way to tell
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Figure 2: Method to produce polarization-entangled states: the bottom setup is a super-
position of the two cases above.

in which crystal the photon pairs were created. Thus when the paths are indistinguishable
the photon pairs get created into a state that is a superposition of the two possibilities:

|Φent〉 =
1√
2

(
|H〉1|H〉2 + |V 〉1|V 〉2e

iδ
)
, (6)

where δ is a phase between the two possibilities. For simplicity, and without much loss of
generality let us assume that δ = 0. The state is then

|Φ+〉 =
1√
2

(|H〉1|H〉2 + |V 〉1|V 〉2) =
1√
2


1
0
0
1

 (7)

The skeptical physicist may say: “What about a mixed state?” A mixed state would be
the situation where the light is not in a superposition of both horizontal and both vertical.
Rather, half the time the pairs come horizontal and half the time they come vertical. How
can we distinguish the two? The answer to this questions leads us straight to Bell.

The Dirac notation cannot describe a mixed state so we need to resort to another
artifact of quantum theory: the density matrix. For a pure state |ψ〉 the density matrix is
defined as

ρ̂ψ = |ψ〉〈ψ|. (8)
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That is, it is the outer product of the state vector with itself. As an example consider the
state |Φ+〉. It is given in matrix form by

ρ̂Φ+ =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 . (9)

Before we discuss Bell let us study in more detail the entangled state given by Eq. 7.
What would the form of the state be in the diagonal-antidiagonal basis (|+45〉 ≡ |D〉 and
|−45〉 ≡ |A〉)? If you recall, the diagonal basis states are related to the horizontal-vertical
states by:

|D〉 =
1√
2

(|H〉+ |V 〉) (10)

|A〉 =
1√
2

(−|H〉+ |V 〉) . (11)

If we put |H〉 and |V 〉 in terms of |D〉 and |A〉 for each particle in Eq. 7, we can show that

|Φ+〉 =
1√
2

(|D〉1|D〉2 + |A〉1|A〉2) . (12)

In the H-V basis the photons are in a superposition of being parallel to each other
in two different ways. In the rotated basis they are also in an entangled state that is a
superposition of the two possibilities in which they are parallel! This is an interesting but
unique aspect of state |Φ+〉. Let us verify this the following way

|Φ+〉 =
1√
2

(|D〉1|D〉2 + |A〉1|A〉2) (13)

=
1

2
√

2


1
1
1
1

+
1

2
√

2


1
−1
−1
1

 =
1√
2


1
0
0
1

 . (14)

State |Φ−〉 corresponds to state |Φent〉 of Eq. 6 with δ = π. In the diagonal basis |Φ−〉
becomes

|Φ−〉 =
1√
2

(|D〉1|A〉2 + |A〉1|D〉2) . (15)

That is, in state |Φ−〉 the light switches from being parallel in the H-V basis to being
orthogonal in the D-A basis.

The density matrix for the state is a bit ominous if you apply Eq. 8 to the state of
Eq. 4. The probability that a photon in a state φ is measured to be in state ψ (the
absolute-value squared of the inner product) is given by the trace of the product of the two
density matrices. The trace is the sum of the diagonal elements of the product matrix:

P (φ)ψ = |〈ψ|φ〉|2 = Tr(ρ̂ψρ̂φ) (16)
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The above probabilities are the ones predicted by entanglement. You can see that
the detection of one is correlated with the result of the detection of the other one. It is
laborious, but can be shown that

P (θ1, θ2)ψp =
1

2
cos2(θ1 − θ2) (17)

In inspecting Eq. 17 you can see that we get maximum probability when the two angles
are the same. That is, the photon pairs in state |Φ+〉 are parallel in any basis. As soon as
we measure one of the photons to be polarized along one direction (with probability 1/2)
we get that the other one is polarized in the same direction with unity probability. Thus,
one can think of the “1/2” in Eq. 17 as the probability of detecting the first photon, and
the cosine term as the conditional probability of detecting the other given that the first
one was detected at the angle θ1.

One last point. The “1/2” term stems from the randomness of quantum mechanics.
When we detect the polarization of the first photon anything can happen. It may be
transmitted or not. It is the detection of the second one that is conditional to the result
of the first detection. Thus, this is not faster-than-light communication of information,
because we do not control the outcome of the first measurement.

In the lab we measure the coincidences, which is equivalent to the conditional probability
of finding photon 1 in state |θ1〉 given that photon 2 was found in state |θ2〉.

P (θ1/θ2)ψp =
P (θ1, θ2)ψp

P (θ2)ψp

(18)

The conditional Probability takes care of the 1/2:

P (θ1/θ2)ψp = cos2(θ1 − θ2) (19)

This correlation is the basis for nonlocality; that the detection of one photon immedi-
ately “collapses” the wavefunction of the two, instantaneously at faster than the speed of
light. This is the view advocated by Bohr in the so called “Copenhagen interpretation” of
quantum mechanics, which Einstein criticized and derided as “spooky action at a distance.”

How do we know that we are not in a mixed state? This is the “realistic view.” In
this view the photons had their state of polarization defined before the measurement was
done. The mixed state is the probabilistic combination of two or more pure states. For
the case of the mixture of state |ψ〉 with probability Pψ and state |φ〉 with probability Pφ,
with Pψ + Pφ = 1,

ρ̂m = Pψ|ψ〉〈ψ|+ Pφ|φ〉〈φ| (20)

As an example, let us find the mixed state mentioned earlier: the realistic alternative

5



to the |Φ+〉. It entails the product states each with a probability of 1/2

ρ̂HH,V V =
1

2
|H〉1|H〉2〈H|1〈H|2 +

1

2
|V 〉1|V 〉2〈V |1〈V |2 (21)

=
1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (22)

Note that this matrix is different than the one of Eq. 9, which means that we can use it to
tell the difference between the two situations.

The conditional probability of detection predicted for the mixed state is given by

P (θ1/θ2)mix = cos2 θ1 cos2 θ2 + sin2 θ1 sin2 θ2. (23)

Notice that Eqs. 17 and 23 have a different functional form. Thus, we have a chance to
find out which one is correct. When θ2 = 0 (i.e., finding photon 2 in state |H〉2) both give
the same answer:

P (θ1/H2)ψ = P (θ1/H2)mix = (1/2) cos2 θ1.

However, if θ2 = π/4 (i.e., finding photon 2 in state |D〉2) they give a different answer:

P (θ1/D2)ψ = cos2(θ1 − π/4),

while
P (θ1/D2)mix = 1/2.

In this lab we will do this measurement.
One final comment. There are two other states that also follow similar results. These

are described by the state

|Ψ±〉 =
1√
2

(|H〉1|V 〉2 ± |V 〉1|H〉2) . (24)

The four set of states |Φ±〉 and |Ψ±〉 are also known as the “Bell” states. They have
interesting properties too: photons in state |Ψ−〉 are in a superposition of possible ways of
being orthogonal in any basis, while photons in state |Ψ+〉 are orthogonal in the H-V basis
and parallel in the D-A basis.

1.2 Bell Inequalities

This argument started by Einstein, Podolski and Rosen, and the reply by Bohr and
Schödinger generated much debate since it was first presented, 1935. Yet for most sci-
entists it was considered mostly an academic hypothetical argument with no possibility
of experimental verification. The correlations described earlier are a “look ahead” into
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today’s understanding, but the debate raged on for years. That changed dramatically in
1964, when John Bell devised a rigorous proof regarding situation where these two distinct
philosophical possibilities could given a conclusive answer by an experiment. This “woke
up” the community and researchers started setting out to do the experimenters to resolve
the dilemma. Today, after a long series of landmark experiments, the issue is all settled:
quantum mechanics is correct. Nature is not realistic, and also “nonlocal” (the instanta-
neous snapping of the state of the other photon, or “spooky action at a distance”). We will
do this experiment here, and see it for ourselves that nature is not-realistic and nonlocal.

Complement 8.B of the textbook presents a discussion of one Bell-type test known as
the “Clauser-Horne” Bell-inequality test. Here we will use a different one known as the
Clauser-Horne-Shimony-Holt (CHSH) inequality, after the names of the authors. We begin
by defining a variable E that expresses the correlation between the polarizations of the two
photons. If they are perfectly correlated, as is the case in state |ψ〉, then E = 1. If they
are uncorrelated then E = 0. The expectation value of the correlation can be defined for
arbitrary angles θ1 and θ2. At these angles E is given by

E(θ1, θ2) =P (θ1, θ2) + P (θ1 +
π

2
, θ2 +

π

2
)− P (θ1, θ2 +

π

2
)− P (θ1 +

π

2
, θ2), (25)

For state |ψ〉 it can be shown that the expression for E reduces to

Eψ(θ1, θ2) = cos[2(θ1 − θ2)] (26)

The perfect correlation of the state |ψ〉 is manifested in Eq. 26 because E(θ, θ) = 1
regardless of θ. In contrast, the mixed state gives a different correlation:

Emix = cos(2θ1) cos(2θ2). (27)

Therefore, one can find situations where the two expectation values give different results.

Question 1 Calculate the correlation parameters E(0, 0) and E(π/4, π/4) for both the
entangled state and the mixed state. State your conclusions about the results.

Note that to obtain E we need to do measurements pairwise at the combinations of
the 4 angles: θ1, θ2, θ1 + π/2 and θ2 + π/2. Furthermore, CHSH defined a variable S that
depends on 4 angles, two for each photon. It is given by

S = E(θ1, θ2)− E(θ1, θ
′
2) + E(θ′1, θ2) + E(θ′1, θ

′
2), (28)

where θ1 and θ′1 are two polarizer angles for photon 1, and similarly, θ2 and θ′2 are two
angles for photon 2. Given that the measurements of E require the orthogonal angles too,
then to get a value for S we need to make 16 pairwise measurements. A local realistic
theory satisfies

|S| ≤ 2. (29)

Entangled states measured at certain angles will violate this inequality.
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Question 2 Show that the inequality of Eq. 29 is violated for state |ψ〉 when θ1 = −π/4,
θ′1 = 0, θ2 = −π/8 and θ′2 = π/8.

Question 3 Show that the inequality of Eq. 29 with Emix of Eq. 27 is satisfied when
θ1 = −π/4, θ′1 = 0, θ2 = −π/8 and θ′2 = π/8.

The measurement of the parameter S that provides the maximal violation of the Bell
inequality of Eq. 29, can be done for state of Eq. 7 with the angles: θ1 = 0◦, θ′1 = 45◦,
θ2 = 22.5◦, θ′2 = 67.5◦. Because of a lack of 100% detector efficiency the correlation
parameters have to be normalized as follows:

E(θ1, θ2) =
N(θ1, θ2) +N(θ1 + π

2
, θ2 + π

2
)−N(θ1, θ2 + π

2
)−N(θ1 + π

2
, θ2)

N(θ1, θ2) +N(θ1 + π
2
, θ2 + π

2
) +N(θ1, θ2 + π

2
) +N(θ1 + π

2
, θ2)

, (30)

where N(θ1, θ2) is the number of coincidences in a set amount of time when the polarizer
angles are θ1 and θ2.

An important quantity is the uncertainty in S, given by

∆S =

√√√√ 16∑
i=1

(
∆Ni

∂S

∂Ni

)2

, (31)

where the uncertainties in the counts are due to statistical errors: ∆Ni =
√
Ni.

2 Parts

The parts that are needed are listed in the table below and refer to Fig. 4

Qty Part Description/Comments
1 BBO crystal pair (X) Two type-I BBO crystals 0.5 m thick, with 29◦

phase matching rotated 90◦ relative to each other and
mounted on a rotation plus tilting (mirror-like) mount.
Axes of the crystals must be in horizontal/vertical
planes.

1 Half-wave plate (V) 405 nm, zero order.
1 Compensating crystal (U) Quartz, A-cut, 6-8 mm thick on a motorized ro-

tation mount.
2 Half-wave plate (H) 810 nm, zero order, on motorized stage.
2 Prism polarizer (P) Glan-Thompson.
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Figure 3: View of the apparatus and all of its components. The path of the 405-nm laser
beam is shown in blue, and the path of the down-converted photons is shown in red.

3 The Remote Apparatus

3.1 General

The apparatus is shown in Fig. 3. As can be seen, the layout is simpler than the ones for
interference experiments. The schematic of Fig. 4 shows more details. In the experiment
a 405-nm laser goes through half-wave plate (V) that out the input light in state |D〉.
A quartz crystal (U) is used to make the two possible states produced by the crystals
(X), |HH〉 and |V V 〉, indistinguishable, and for setting δ = 0 in Eq. 6. Each of the down-
converted photons then is projected onto a linear polarization state. In the apparatus shown
in Fig. 4, polarizers are preceded by half-wave plates. The reason for this is practical. The

Figure 4: Apparatus for measuring entanglement and Bell Inequalities.
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polarizers are bulky and wedge the beam, so if we rotate them, they modify the alignment
of the light heading into the optical fiber. The waveplates, due to their polarization rotating
properties, must turn by half of the angle that the rotating polarizer is expected to rotate.
So in actuality the down-converted photons go through rotating half-wave plates (H) and
fixed horizontal polarizers (P). Thereafter the photons go through filters, enter optical fibers
and end up at the detectors. We refer to the detection of the state of the two photons by
Alice and Bob.

3.2 Remote Hardware

In this experiment there are 4 actuator parts, with 3 being rotating:

• The quartz plate that makes the two possible states indistinguishable an be rotated
90 degrees. In one position helps prepare the best entangled state possible. In another
position it is ini a partially mixed state. It is controlled by a serial screen (below). It
is labeled “Entangled - Mixed - COM12.”

• Two rotating half-wave plates, one for each photon allow us to project the light into
any linearly polarized state. They are “Alice - COM4” and “Bob - COM8.” Their
rotation is specified by the angle in units of 1/9 of a degree (inventing a unit, we call
it “nods”). This way 90 nods = 10 degrees.

• This last actuator is electrical, and like in previous labs, it is used to turn on/off the
laser and detectors. It uses Arduino driving two relays.

3.2.1 Logging in

You log into the lab computer using remote desktop. It is the same PC machine as the
quantum eraser lab:

Ho313-96143W.colgate.edu

Then you log into the PC:
Username: phas2
Password: Fr2=Gm1m2

3.2.2 Actuators

Once you log in, your screen will appear as something like what you see in Fig. 5. You will
see 6 windows. One is a view of the apparatus from a webcam (upper left in the photo).
The window on the lower left is a serial interface to the Arduino based circuit that has 2
functions: To turn ON/OFF the power to the (blue) pump laser and detectors. More on
this below.

In the window with the Matlab platform there are 2 programs we will use: one to
acquire data continuously (Continuous Counting), and the second program to do a paused
scan of 16 points.
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Figure 5: Screen of the Desktop that controls the experiment in the lab. The computer
name is: “Ho313-96143W.colgate.edu”. It has a webcam window (upper-left), 4 serial
interface windows (lower portion) and a Matlab window (upper right).

3.2.3 Webcam

The webcam allows you to see the parts of the apparatus, as seen in Fig. 5. Note that there
is visual evidence that the laser is ON (by the glare in the beam dump) and that detectors
are ON by the voltage applied to them.

3.3 Actuator Commands

Here we detail the commands for the different programs. All commands given below are
within quotation marks. Do not enter the quotation marks.

3.3.1 Laser and detectors ON/OFF

The laser must be turned ON at the very beginning. Be mindful that there is a warm-up
time of several minutes for laser to reach a stable output. The power to the laser and
detectors is controlled by a program that runs on an Arduino-based circuit (through the
COM9 serial port). The 2 detectors (Alice-right and Bob-left) can be turned ON or OFF
at any time. You should turn them OFF when not in use.
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The Arduino program is always running. The command is entered on the top command
line. The action taken is listed in the lower part of the window. A summary of commands
follows:

• Laser ON: On the command line type “1” . Turn it on before you start the ex-
periments. You can do two a visual verification via the webcam that this action has
taken place: you can see a purple glare coming out of the beam dump.

• Laser OFF: On the command line type “2” . Turn it off once you are done with the
lab session.

• Detectors ON: On the command line type “3” . Turn it on before you start the
experiments. There is a red digital readout near the top-central part of the webcam
window that indicates how much voltage is being applied to the detectors. This
voltage should be close to 5 V. The value should be slightly above 5 V but never
below 4.5 V (otherwise the detector signals will be unstable).

• Detectors OFF: On the command line type “4” . Turn it off once you are done
with the lab session.

• Cold Restart: In case you need to do this, in the command bar there is a round
icon for the Arduino platform. You click on this. Then you click a right arrow in the
upper left that compiles the program and loads it to the circuit. You then need to go
to the top menu bar, click “Tools” and then click “Serial Monitor.” This opens the
screen that you see in the figure. Resize it and put it in the lower left. You can then
minimize the Arduino platform.

3.3.2 Rotational Controls

We have 3 rotational mounts controlled by serial interfaces (the ones with a black back-
ground. The way to move the motor is to enter ”ma” followed by the angle in degrees times
9 (i.e. in “nods,” so 10 degrees is 90 nods, and 90 degrees is 810 nods). Once you enter
the command, a line-record of the instruction appears. This is also useful to keep track
of what was the previous instruction. It is important to verify that the rotator is moving.
There is a small mark on the top side of rim of the rotator that rotates with the optical
element.

3.4 Data Scans

This is the standard Matlab program to do scans. Go to the directory:
“Desktop-QuantumLab-2Detectors-Tomography-ManualWaveplate”, and run
“Bell Manual Altera”.
Effectively this program does a stepped scan displaying 16 points. It pauses in between

points so that you can change the waveplate angles. A menu will appear with several
entries:
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• COM Port of Counter: Must read read “COM11”

• Time interval: Enter the number of seconds per point

• Name of File: (apparently this is not working. No need to enter anything)

• OK button: The program will take a data point after you click this, and then pause.

• Excel File Name: The data will be placed in a spreadsheet named “Bell”.

4 Procedure

The procedure involves the following steps: The apparatus is set up so that the photon
pairs are in the entangled state of Eq. 7.

1. First measurements: Run the program “Continuous counting,” available in one of
the Matlab tabs. Enter COM11 for the Counter COM port. Arrange the screens so
you can see simultaneously the webcam, the continuous counting GUI and the two
serial ports for Alice and Bob, as shown in Fig. 6. Record the counts for an individual
data point for the following settings, and enter it in the table:

State State θBob θAlice HWPBob HWPAlice N(θBob, θAlice)
Bob Alice (degrees) (degrees) (nods) (nods)

V V 0 0 0 0
H V 90 0 405 0
H H 90 90 405 405
V H 0 90 0 405
D D 45 45 203 203
D A 45 -45 203 -203

.

Question 4 Comment of the results of these results. Do they agree with your un-
derstanding? Explain.

2. Angle correlations:

(a) Run “Bell Manual Altera.”

(b) Enter the the COM port (COM11) and the time: 1 (for 1 s) in the menu.

(c) Position the screens so that you can change the rotator positions while you
observe the rotator in the webcam move and data plot. See Fig. 6.

(d) Set HWP1 to be 22.5 degrees (or 203 nods) and HWP2 to 0 nods.
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(e) After clicking “OK” in the window “Waveplate Orientation” the program will
record a data point. See the data point appears on the screen.

(f) Set the next angle for Alice by entering the previous value plus 45 nods (e.g. if
current angle is 90 nods, the next one should be 135 nods). See above how to
enter this command. You do not need to enter any text in the window with the
OK button. Note also that the half-wave plates are set at half the angle of the
polarizer (the angles in nods have taken this into account).

(g) Click OK again.

(h) Set the next angle and repeat e-g until all 16 data points are taken.

Figure 6: Desktop screen for taking data step by step.

3. Bell test Finally the big test on the nature of reality.

(a) Run again “Bell Manual Altera.”

(b) For better statistics, enter a much longer integration time per point (much more
than 1 s; there are only 16 points)

(c) Take data and record the results for the angles of Bob and Alice given in the
table below.

(d) Follow the same procedure as in the previous part.
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θBob θAlice HWPBob HWPAlice N(θBob, θAlice)
(degrees) (degrees) (nods) (nods)

0 22.5 0 101
45 22.5 203 101
90 22.5 405 101
135 22.5 608 101
0 67.5 0 304
45 67.5 203 304
90 67.5 405 304
135 67.5 608 304
0 112.5 0 506
45 112.5 203 506
90 112.5 405 506
135 112.5 608 506
0 157.5 0 709
45 157.5 203 709
90 157.5 405 709
135 157.5 608 709

4. Analysis

(a) Calculate S from the data in the table above. You can do so in Mathematica
or by entering the values in the spreadsheet that is provided (for this you enter
the data in the tab labeled “CheatsheetHWP”, to then get the value of S in the
HH+VV tab).

(b) Calculate the error in your determination of S. (Done also in the spreadsheet.)
State your conclusions.

(c) Bonus point: Rotate the quartz plate (U) by 90 degrees by entering “ma810”
in the Entangled Mixed serial window. Verify that the plate rotates in the
webcam. This should put the light into a partially mixed state. Retake the data
and evaluate S for this situation.

(d) Write a conclusion based on your results.
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