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The goal of the lab is to investigate interference further and to apply the quantum
formalism to two-Hilbert spaces.

1 Theory

1.1 A Simple Description

First let us understand the physics with simple arguments and distinguish the forest from
the trees so to speak. The beam splitters have reflection and transmission amplitudes r
and t, respectively. We could assume that the beam splitters are identical, but that is not
necessarily the case. The probability amplitude of reaching detector B through one arm
is rt, and the probability via the other arm is also rt. Because the arms lengths may not
be exactly the same then there is a phase difference between the two arms 6 = 27AL/\,
where AL is the difference in length of the two arms and ) is the wavelength. so the total
probability amplitude, Feynman’s style is the sum of the probability amplitudes for the
two indistinguishable paths:

pp =1t + rte’. (1)

The probability is Pz = |pp|®>. Likewise, the probability amplitude in getting to C' is
rr through the top arm (reflection-reflection) and ¢t via the lower arm (transmission-
transmission). There is still a phase due to the path length difference. Thus, the probability
amplitude in getting to C is:

po = rr+ tte, (2)

with the probability then being Po = |po|?. If t = 1/4/2 and r = i/+/2, then you get the
familiar expressions for interference in the probabilities.

Question 1 By evaluation of the above expressions, show that Pg + Po = 1. Do this
calculation by hand.

If the paths are distinguishable then the probabilities add separately:

Pg = |rt]? + |[rte®|? = 1/2 (3)
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and

Po = |rr|? + |t > = 1/2. (4)
In this experiment the paths become distinguishable due to polarization: we rotate the
polarization of the photon as it is traveling through one of the arms.

Then comes the eraser. After the interferometer in path B we put a diagonal polarizer,
which has a probability amplitude of ¢ = 1/ V2 of transmitting vertical or horizontal
polarizations. After the polarizer both photons have the same polarization (diagonal) and
the path information is erased. The paths are indistinguishable again. The probability
amplitude in getting to B is now

Pl = rtq + rtge® (5)

Question 2 Find the probability Py = |ps|*.

The last part is called the “quantum eraser.” By placing the polarizer after the interferom-
eter we erase the path-labeling information, and thus we regain interference. It is striking
that we decide whether to get or not the interference after the photon goes through the
interferometer.

1.2 Distinguishability

Now we do a more rigorous analysis using the quantum mechanics algebra. In this ex-
periment we have two degrees of freedom of a single particle, so the description combines

the space of spatial directions, with the eigenstates |X) = (1) ) and |Y) = ( (1) ), and

polarization, with the eigenstates |H) and |V'), as shown earlier. The space of direction
of propagation is two dimensional, and the space of states of polarization is also two di-
mensional. Quantum mechanics has a method to generate vectors and operator matrices
of combined Hilbert spaces: it involves the tensor product, which is denoted by the symbol
®. In the tensor product operation, we multiply each element of one space (propagation
direction) to each element of the other space (polarization). The ordering of spaces in the
tensor product is important. In our case, we will order direction of propagation first, and
polarization second.
The eigenstates of our experiment are then:

|XH) =[X)®|H) =

XV) = 1X) V) =
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Using the tensor product we can also construct the matrices for the interferometer. The
non-polarizing beam splitter acts on one space and not the other, so it will be the tensor
product of the beam-splitter matrix (first) with the identity (second). We put identity for
the polarization part because the beam splitter does not alter the polarization. The matrix
for the beam splitter in the larger space will be:

. . N t r 1 0
BQ_Bl@l_(r t)®<0 1)_

where t = 1/\/§ and r :z/\/§
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Question 3 Find the matrix M, for the mirrors of the interferometer.
The matrix for the interferometer phase: Ag = 1211 @ 1:
: 1 0
A=y &) (10)
where ¢ is the phase difference between the two arms.

Question 4 Find the matrix A, for the interferometer phase.

The quantum eraser has two wave plates in the arms of the interferometer. The matrix
representing the half wave plate in one arm with angle § and a half-wave plate with § = 0

in the other arm is:
cos20  sin 26 0 0

. sin260 —cos20 0 O
W (6,0) = 0 o 10 | (11)
0 0 0 1

Question 5 Find an expression for the full interferometer matrix (laborious):
Z = By Ay MyWo(6,0)Bs. (12)

(You should use Mathematica. By the way, tensor product of A and B is KroneckerProduct [A, B)).
Keep the answer in terms of r and ¢.



Question 6 Take-home: Verify that when 6 = 7/4

—rt  rte® —t2  p2ei
5 rte ot r2e 2
7, — ) . 1
2 _7,,2 t2615 —rt ,',.tel5 ) ( 3)

t2ei 2 rte ot
The initial state is the photon traveling along x vertically polarized, or in state | XV'). If

we measure only on the output along the x -axis then the operator for the photons heading
in that direction involves projecting the state past the interferometer:

r- (0o ()

The final state will be a superposition of | X H) and |XV), so the final probability of
detecting a photon will be

P(8) = (X H|Px Zs| XV |2 + (X V|Px Zo| X V) |2. (15)

Question 7 Find the vector for PxZ,|XV) (Mathematica is fine).

Question 8 Find the probability P(¢) when § = 0. You must do this by hand, because
Mathematica gets complicated. Replace ¢t = 1/4/2 and r = i//2. It should look familiar.

We can derive that for an angle 0

P() == (1+Vcosd), (16)

N | —

where

V = cos 26 (17)

is called the visibility of the interference fringes. Note that 6 goes from 0 to 7/4, or
equivalently, V' from 1 to 0, respectively.

The previous equations are very significant. When 8 = 0, V' = 1 and the probability is
P = (1/2)(1 + cos ), showing interference, a case where the paths are indistinguishable.
When 0 = 7/4 we get V = 0, and so P = 1/2 and there is no interference. But that
approach cannot get us to all cases. A case when the paths are fully distinguishable by
polarization. Note that this is consistent with the more intuitive approach of Feynman,
but that approach does not easily give results for all the cases allowed by Eq. 17.

The distinguishability of the paths D is given by

D=1-V. (18)



In the experiment we measure photon counts, which are proportional to the probability:
N = NoP(6), (19)
When § = 2n7 (n integer) we get the maximum photon counts

N,
Ny = 70(1 +V), (20)

and when § = mm (m odd integer) we get the minimum counts:

N,
Niin = 70(1 —V). (21)
Since we do not know Ny, we can use Eqs. 20 and 21 to get the visibility from measurable
quantities:
Nmax - Nmin
=D& =~ mh 22
Nmax + Nmin ( )

1.3 Erasure

We then add the eraser: a polarizer with transmission axis along the diagonal direction.
We put his element in the z-output of the interferometer. We can account for the eraser in
the quantum mechanics algebra: we create a matrix that represents the eraser operation. It
must project the polarization along the x-direction after the interferometer onto the state
|D), or A

Pp = |D)(D]. (23)

In the y-direction there is no eraser, so the matrix in the combined spaces is

1/2 1/2 0 0

12 12 00

Ea=1"09 0 10| (24)
0 0 01

Notice that in the top-left we have the matrix for the projection along |D), to effect the
projection in the x-subspace; and in the lower-right we have the identity matrix so that the
polarization along the y-direction is left untouched. The operator for interferometer plus
eraser will then be

A

B 2. (25)

Question 9 Show
PSR 1
(XD|E,,Z|XV)|* = 1(1 + cos ). (26)
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Figure 1: Schematic of the setup to recreate the quantum eraser. The numbers in paren-
thesis refer to the numbered steps in the procedure. Additional optical elements include
half-wave plates (H) and a polarizer (P).

2 The Remote Apparatus

2.1 General

You log into the lab computer using remote desktop. Once you do this, your screen will
appear as something like what you see in Fig. 2. You will see various windows. Two show
views of the apparatus and interferometer from webcams on before and above the apparatus.
The window on the upper left that is a serial interface to the Arduino based circuit similar
to the previous one to unblock the lasers and apply power to the detectors. Three other
windows are the serial interfaces to rotational mounts. On the right is a window with the
Matlab platform that runs the data acquisition while scanning a piezoelectric element that
changes the path-length difference in the interferometer.

2.1.1 Summary of Commands

The apparatus is basically the previous lab’s apparatus plus

e Pump Laser ON (Unblocked): On the command line of the Arduino platform
type “1”7 . Turn it on before you start the experiments. You can do two visual
verification that the beam is hitting the polarizer mount.

e Pump Laser OFF (Blocked): On the command line of the Arduino platform type
“2”7 . Turn it off once you are done with the lab session.

e Detectors ON: On the command line of the Arduino platform type “3” . Turn it
on before you start the experiments. This voltage should be close to 5 V. The value
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Figure 2: Screen of the Desktop that controls the experiment in the lab. It has a webcam
window (upper-left), a serial interface window (lower left) and a Matlab window (right).

should be slightly above 5 V but never below 4.5 V (otherwise the detector signals
will be unstable).

Detectors OFF: On the command line of the Arduino platform type “4” . Turn it
off once you are done with the lab session.

Alignment Laser ON (unblocked): On the command line of the Arduino platform
type “5”. Before you do this you must be sure that the detectors are off:
the digital display seen with the webcam must read 0.000.

Alignment laser OFF (blocked): On the command line of the Arduino platform
type “677 .

Cold Restart: In case you need to do this, in the command bar there is a round
icon for the Arduino platform. You click on this. Then you click a right arrow in the
upper left that compiles the program and loads it to the circuit. You then need to go
to the top menu bar, click “Tools” and then click “Serial Monitor.” This opens the
screen that you see in the figure. Resize it and put it in the lower left. You can then
minimize the Arduino platform.

Menu On the command line of the Arduino platform type “0” for a display of the
menu of commands.

Block Arm: To block one of the arms of the interferometer we use the serial com-
munications platform “Blocker” and enter “ma810” ( 90° = 90 x 9 = 810 nods)



e Unblock ArmTo unblock the arm enter “ma0” in the serial communications plat-
form “Blocker.”

e Rotate waveplate: To rotate the waveplate we use the serial communications plat-
form “Waveplate” and enter “ma” followed by the angle in nods (rounded). For
example 45° = 45 x 9 = 405 nods. So to rotate to 45 degrees you enter “mad05”.
Note that the waveplate rotates by twice the angle, so setting the waveplate to 45
degrees rotates the polarization by 90 degrees.

e Insert Eraser: To move the eraser we need to rotate the arm that holds it. To insert
it in the path of the beam you need to rotate it 90 degrees, or enter enter “ma810”
in the serial communications platform “Eraser”. To take it out you enter “ma0”.

3 Procedure

3.1 Planning

You need to plan ahead your experimental procedures. They should follow the following
goals

1. If we block one of the arms of the interferometer, what is the predicted probability
for reaching B and C? Investigate this experimentally. What does this tell you about
the interferometer? Note that in the write-up we present the theory for an idealized
experiment. The optical elements may not have the values that we assume to have
(e.g., t may not be 0.707. All we know is that |r|> + [t|* = 1).

2. Equation 19 gives the number of counts as a function of the interference phase §.
Your goal is to take measurements and obtain values of V' for various degrees of
distinguishability. Compare those values with the prediction of Eq. 17.

3. When we add the eraser, the probability is given by Eq. 26. How close does the
experiment reflect Eq. 267 Can you explain the difference between the counts in AB
and AC?

3.2 Experiments

1. Using the command list given above, explore all the movable parts. Make sure that
they do what you think they should do.

2. Take data scans according to your experimental plan.

3. In your report answer all questions and show all graphs with error bars and legends.
Comment on their significance.

4. Return all windows and equipment to their initial settings: lasers blocked, detectors
off, angles at 0.



