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Abstract

We present a violation of the Clauser–Horne–Shimony–Holt and the Clauser–Horne
inequalities using heralded single photons entangled in momentum and polarization modes. A
Mach–Zehnder interferometer and polarization optics are used to rotate the spatial and
polarization bases, respectively. With this setup we were able to test quantum mechanics with
the original formulation of the Clauser–Horne inequality. The results rule out a wide class of
realistic non-contextual hidden-variable theories.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the great quests in physics today is to prove via
experiments the fundamental tenets of quantum mechanics:
that nature is not realistic (i.e. observables do not have pre-
existing values), that it is indeterministic (i.e., that the results of
future measurements are not determined by initial conditions),
contextual (i.e., that measurement outcomes can depend on
the context, e.g., on measurement outcomes for comeasurable
observables) and nonlocal (i.e., that measurement outcomes
at two spacelike separated locations can be correlated with
one another more strongly than allowed classically). These
are pursued either alone or combined. Ever since the famous
discussions of Bohr and Einstein at the Solvay meetings of
the early twentieth century (Wheeler and Zurek 1983), and the
classic Einstein–Podolski–Rosen paper (Einstein et al 1935),
these questions have preoccupied physicists, philosophers and
scientists alike. This has been enhanced by the staggering
success of the soon-to-be 100-year-old theory of quantum
mechanics in explaining natural phenomena. Some are
bothered, as Einstein was, that despite living our daily lives in
an apparent classical, realistic, deterministic, non-contextual
and local world, we find that quantum mechanics, the theory
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with the perfect record, says otherwise. The question thus
arises as to whether the quantum-mechanical description of
physical phenomena is the ultimate one, or whether it could be
somehow completed in accordance with a realistic view of the
world. Since the 1960s Bell (1965, 1966) and others (Kochen
and Specker 1967, Clauser et al 1969, Clauser and Horne
1974) have told us that we can decide these questions in the
laboratory, and technological advances have indeed allowed us
to get near conclusive answers to these fundamental questions
about nature and about whether quantum mechanics is truly
complete or not.

The answers provided by laboratory experiments are not
yet conclusive because most of the tests that were designed—
or performed—suffer from some ‘loopholes’. However,
a number of questions have already been answered. For
example, Aspect and co-workers showed via experiments with
entangled photons and electro-optical devices that nature is
not realistic or non-local (modulo loopholes), as maintained
by quantum mechanics (Aspect et al 1982). More recent
tests confirm these results via violations of Bell inequalities
to many standard deviations and in closing some experimental
loopholes (Weihs et al 1998, Tittel et al 1998, Rowe et al
2001). Thus the question that nature is not realistic and
nonlocal appears to have been settled, although some still
argue otherwise (Santos 2004).

0953-4075/09/015503+09$30.00 1 © 2009 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/0953-4075/42/1/015503
mailto:egalvez@mail.colgate.edu
http://stacks.iop.org/JPhysB/42/015503


J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 015503 B R Gadway et al

Despite these results, it is a misconception to think
that all is said and done. Hidden-variable theories that are
realistic but non-local could still negate quantum mechanics.
A recent experimental test has started the task of addressing
this question (Groblacher et al 2007), but the jury is out about
how conclusively (Aspect 2007).

There are also other tests that probe realism, contextuality
and determinism without addressing locality. This class of
measurements does not require correlated pairs of particles,
but does require two qubits. Two particles are not needed to
decide these types of tests. The two qubits can be realized
by entangling two modes of the same particle. In the case of
photons it can be polarization, propagation direction (Michler
et al 2000, this work), or orbital angular momentum (Mair
et al 2001, Barreiro et al 2005). In the case of massive particles
(e.g., neutrons) it is momentum and spin (Hasegawa et al
2003). While the latter tests have ruled out non-contextual HV
theories via conventional Bell-type inequalities, more recent
tests with single photons (Huang et al 2003) have started
to probe different forms of contextuality addressed by the
Kochen–Specker theorem (Kochen and Specker 1967). A
third class of tests, only proposed thus far, involves a single
particle and a single qubit. These types of tests probe realism,
contextuality, determinism, invasiveness of measurements and
macro-realism (Leggett and Garg 1985, Malley 1998, Lapiedra
2006, De Zela 2007).

Another class of tests involving three or more
qubits relieves the requirement of performing statistical
measurements (Greenberger et al 1989). Such all-or-
nothing tests also rule out different aspects of HV theories
(Bouwmeester et al 1999, Michler et al 2000).

It is important to note that the non-contextual HV theories
tested by single photons admit an important tenet of modern
physics: that light at a fundamental level is quantized in the
form of photons. Experimental tests of these theories use non-
classical sources of light or measurements, and thus cannot be
fully explained by classical wave theories. That the results of
the measured intensities in these experiments are mimicked by
the predictions of classical wave optics is a common source
of confusion because the aim of the experiments is to test
quantum mechanics, not the wave description of light. Similar
tests on massive particles do not lead to the same confusion
because they do not have a classical wave counterpart like light
does.

Our experiments use two qubits that are carried by a single
photon. They aim at testing quantum mechanics via two
Bell-type inequalities, namely the Clauser–Horne–Shimony–
Holt (Clauser et al 1969, hereafter referred to as CHSH)
and the Clauser–Horne (1974, hereafter referred to as CH)
inequalities. The novelty with the CHSH test introduced here
is that we perform it in a form that is simpler than in a previous
experiment of this type (Michler et al 2000). Perhaps more
importantly, we perform a first test of the CH inequality with
single particles. In its original form this inequality relies on
a combination of single and joint probabilities. Experiments
with two particles cannot reliably introduce the single-particle
probabilities due to a lack of knowledge of the detection
efficiencies (Clauser and Shimony 1978). We present an

analysis of the CH inequality and show that two-qubit systems
can be used to perform tests of the original CH inequality
because single probabilities reduce to combinations of joint
probabilities with the same detection efficiency. Thus, the
detection efficiencies drop out of the inequality altogether. By
avoiding normalizing detector counts we avoid loopholes that
may be invoked to validate HV theories.

The latter is an important point because of all reported
tests of the CHSH and the CH inequalties only one does not
suffer from the so-called detection loophole (Rowe et al 2001).
In order to take into account detectors’ efficiencies η without
invoking auxiliary assumptions about undetected events, one
has to modify the original CHSH and CH inequalities (Clauser
and Horne 1974, Garg and Mermin 1987, Eberhard 1993).
Quantum mechanics predicts the violation of these modified
inequalities for η > η0, where η0 depends on the kind of test
(two-photon, atom–photon, etc). Well-known values of η0

are 0.83 (Garg and Mermin 1987), 0.67 (Eberhard 1993), and
0.5 (Cabello and Larsson 2007). In the present experiments
the issue related to detector efficiencies drops because the
inequality is independent of them.

As mentioned earlier, our tests are conducted with single
particles (photons). Thus, they belong to a class of tests
that was initiated by Tan et al (1991). There is an ongoing
discussion as to whether a single-photon state can display
nonlocal features or not (Tan et al 1991, Peres 1995, Hardy
1994, Greenberger et al 1995, van Enk 2005). Indeed, it has
been claimed (see, e.g., Hardy (1994) and van Enk (2005))
that single-photon states like |0〉A|1〉B + |1〉A|0〉B can display
nonlocality. Here, |0〉 means the state with zero photons, while
A and B denote two spatially separated modes. We should
stress, however, that in our case the issue of nonlocality does
not arise at all because in our experiments the outcome of
the measurements is recorded with a single detector. That is,
the system is never projected onto a superposition of different
photon-number states.

This paper is organized in the following way. In section 2,
we describe a general method and the corresponding
theoretical framework for making experiments with single
photons and two qubits. In section 3 we describe the apparatus
and in section 3 we present the results of the experimental
tests. Further discussions and concluding remarks are given
in section 4.

2. Theoretical framework

A single photon can be prepared in an entangled state of
momentum (spatial) and polarization modes of light (Englert
et al 1999). Once the state is prepared then it can be projected
into rotated bases of each mode, and thus can be used to test
quantum mechanics. The production and measurement of this
type of entanglement was previously adapted to an experiment
for the purpose of testing non-contextual HV theories (Michler
et al 2000). In this work we follow similar aims but apply
different methods. In particular, we introduce the use of the
Mach–Zehnder interferometer as a spatial-basis rotator and
projector.
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Figure 1. Schematic of the method to produce and analyse single photons entangled in the spatial and polarization modes. A state
preparation arrangement (SPA) puts the light in an entangled state of polarization and momentum. The spatial basis was rotated by an angle
α with a Mach–Zehnder interferometer (MZI) with a phase difference between the two paths of �φ = 2α. The polarization basis states are
rotated by an angle β using a half wave plate forming an angle γ = β/2. The polarization states are rotated by half-wave plates
(HWP(angle)) and projected using polarization beam splitters (PBS).

We will start the discussion of our experiments by
considering the use of a general setup shown schematically
in figure 1. Photons are initially produced in the state |X〉|V 〉,
which represents the light propagating along the X-direction
and polarized vertically (the apparatus is contained in the
horizontal plane). The two-way path followed by the photon
and its polarization constitute the two qubits that we employ.
The standard basis of the corresponding four-dimensional
Hilbert space is given by {|Y 〉|V 〉, |Y 〉|H 〉, |X〉|V 〉, |X〉|H 〉} ≡
{|YV 〉, |YH 〉, |XV 〉, |XH 〉}. This basis can be realized by
any two qubits and is generally denoted as {|↑↑〉, |↑↓〉, |↓↑〉,
|↓↓〉}. For our purposes, it is immaterial whether each qubit
is attached to a different particle, or whether the two of them
are attached to one and the same particle. In the present case,
a single particle (photon) will carry both qubits.

One standard test of Bell inequalities consists of preparing
the singlet-state |�−〉 = (|XV 〉−|YH 〉)/√2 and submitting it
to four correlation measurements (each party chooses between
two local settings). When this state is realized with two
particles, the two measurements take place in two distant
regions. Each of these measurements amounts to a projection
of a qubit along some direction, given by a unit 3-vector −→

a .
The corresponding projector in the two-dimensional Hilbert
space of the qubit being measured has the form (I +−→

a ·−→σ )/2,
where I is the identity operator and −→

σ denotes the triple of
Pauli matrices. The result of each measurement can be +1
(‘spin up’) or −1 (‘spin down’). Considering the projectors,
π±

a = (I ± −→
a · −→

σ )/2, and π±
b = (I ± −→

b · −→
σ )/2, one can

easily calculate the quantum-mechanical prediction for the
probabilities of the four possible results of the measurements
as

P(+ + |a, b) = 〈�−|π+
a π+

b |�−〉 = 1
2 sin2 θab, (1)

P(+ − |a, b) = 〈�−|π+
a π−

b |�−〉 = 1
2 cos2 θab, (2)

P(− + |a, b) = 〈�−|π−
a π+

b |�−〉 = 1
2 cos2 θab, (3)

P(− − |a, b) = 〈�−|π−
a π−

b |�−〉 = 1
2 sin2 θab, (4)

with θab = cos−1(
−→
a · −→

b ) being the angle between vectors−→
a and

−→
b . The CHSH and CH inequalities involve four unit

vectors −→
a ,

−→
a′ ,−→b and

−→
b′ . When probabilities similar to the

above ones are replaced in the CHSH or in the CH inequalities
and the unit vectors are properly chosen, then quantum
mechanics predicts the violation of the said inequalities.

Our experimental objective is to mount an arrangement
that is capable of producing an output like that of
equations (1)–(4). In the latter equations |�−〉 is one of the
four Bell states conforming the Bell basis, which are given by

|�±〉 = 1√
2
(|XV 〉 ± |YH 〉), (5)

|�±〉 = 1√
2
(|XH 〉 ± |YV 〉). (6)

Any one of the Bell states could be used for our purposes.
In our case, we used |�+〉. To produce it, we employed the
state-preparation arrangement (SPA) of figure 1, which is a
gate that converts an input state from the standard basis into
a state of the Bell basis. The SPA consists of a nonpolarizing
50–50 beam splitter that provides the light with two paths
and a half-wave plate in the upper path, oriented to change
polarization from vertical to horizontal. In the lower path the
polarization of the light remains unchanged. If the light input
to the SPA is in state |XV 〉, then at the place where the two
beams meet again the state of the light is given by

|ψ〉 = 1√
2
(|XH 〉 + eiδ|YV 〉), (7)

where δ is the phase due to a difference in path lengths. Setting
δ = 0 gives us state |�+〉 of equation (6).

The light in this state is then submitted to a Mach–Zehnder
interferometer (MZI) followed by polarization components at
its output ports (within dashed lines in figure 1). The MZI is a
gate whose essential action is to rotate the first qubit (Englert
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et al 1999). The action of MZI can be described as the
successive application of UBS (for the nonpolarizing first beam
splitter) followed by Umirror (for the mirrors) and U(ϕ1, ϕ2) for
the phases gained by light traveling along the upper and the
lower branches of the MZI. Finally, UBS acts again, so that the
MZI is represented by

U1 = UBSU(ϕ1, ϕ2)UmirrorUBS. (8)

Thus, acting on the spatial eigenvectors |X〉 = (1, 0)T and
|Y 〉 = (0, 1)T the operator U1 is represented by the unitary
matrix

U1 = ei(�ϕ+π/2)

(
cos α sin α

−sin α cos α

)
= ei(�ϕ+π/2)R(α), (9)

with α = (ϕ1 − ϕ2)/2 and �ϕ = (ϕ1 + ϕ2)/2.
The output ports of the MZI have half-wave plates oriented

at an angle γ that rotate the polarization basis |H 〉 = (1, 0)T

and |V 〉 = (0, 1)T according to U2 = R(β), where β = −2γ .
The result of applying U(α, β) = U1(α) ⊗ U2(β) on the Bell
states is given by

U |�±〉 = ei�ϕ(sin(α − β)|�±〉 − cos(α − β)|�∓〉), (10)

U |�±〉 = ei�ϕ(cos(α − β)|�∓〉 + sin(α − β)|�±〉). (11)

Each of the above four states can be used to violate
a Bell-like inequality. Take, for example, U |�+〉 =
ei�ϕ(sin(α − β)|�+〉 − cos(α − β)|�−〉) as the state on
which our system has been prepared. The probabilities of
detecting the states belonging to the standard product basis
{|XH 〉, |XV 〉, |YV 〉, |YH 〉} are then given by

PXH = |〈XH |U |�+〉|2 = 1
2 cos2(α − β), (12)

PXV = |〈XV |U |�+〉|2 = 1
2 sin2(α − β), (13)

PYH = |〈YH |U |�+〉|2 = 1
2 sin2(α − β), (14)

PYV = |〈YV |U |�+〉|2 = 1
2 cos2(α − β). (15)

The outputs of the MZI project the state in the spatial
basis states, and the outputs of the polarizing beam splitters
project the state further into the polarization basis states. Thus,
each of the detectors records the events when the light is
projected on each of the product basis states, and thus over
time gives signals that are proportional to the probabilities of
equations (12)–(15). It is well known that with these
probabilities it becomes possible to violate Bell-type
inequalities such as the CHSH and the CH inequalities.

2.1. Clauser–Horne–Shimony–Holt inequality

The CHSH inequality follows from the assumptions
underlying non-contextual hidden-variable theories and, in
our case, constrains the degree of spatial and polarization
correlations for measurements at different rotation angles. The
inequality uses the correlation parameter

SCHSH = E(α, β) − E(α, β ′) + E(α′, β) + E(α′, β ′), (16)

where E(α, β) is given by

E(α, β) = PXH (α, β) + PYV (α, β)

−PXV (α, β) − PYH (α, β). (17)

The CHSH inequality states that any non-contextual HV theory
satisfies |S| � 2. For a suitable choice of angles, for example
α = −π/4, α′ = −π/2, β = −3π/8 and β ′ = 3π/8,
quantum mechanics predicts SCHSH = 2

√
2. This follows

from E(α, β) = cos(2(α − β)).
In the experiment, the probabilities that would enter the

definition of E(α, β) are determined by four photon counts
N(α, β). For example, PYV (α, β) = N1(α, β)/N . Since it is
difficult to obtain a reliable measure of the detection efficiency,
and therefore N, it is customary to redefine the correlation
parameter S in terms of the normalized parameters E∗ instead
of E, where E∗ = (NXH +NYV −NXV −NYH )/(NXH +NYV +
NXV + NYH ). However, such an expedient has given rise to
objections on the validity of the test (Santos 2004).

2.2. Clauser–Horne inequality

In the CH inequality, any four numbers x1, y2 , x ′
1, y

′
2 lying in

the interval [0, 1] satisfy

x1y2 − x1y
′
2 + x ′

1y2 + x ′
1y

′
2 − x ′

1 − y2 � 0. (18)

Starting from this inequality, any non-contextual HV theory
predicts

SCH ≡ P cl
YV (α, β) − P cl

YV (α, β ′) + P cl
YV (α′, β)

+ P cl
YV (α′, β ′) − P cl

Y (α′) − P cl
V (β) � 0. (19)

The correlations P cl
YV (α, β) are classical probabilities for

the two involved outcomes, in this case corresponding to
vertically polarized photons (V ) measured in the upper branch
(Y) under different angles, given by α and β. These classical
quantities have the forms P cl

r (α) = ∫
dλ ρ(λ)pr(λ, α) and

P cl
rs (α, β) = ∫

dλ ρ(λ)pr(λ, α)ps(λ, β) , with r, s specifying
the measurement result (X or Y, and H or V , in our case). The
label λ stands for one or more hidden variables underlying a
complete description of the state produced at the source with
probability density ρ(λ), whereas pr(λ, α) is the probability
of obtaining the result r when the detector was set as
specified by α, the detection being performed on a particle
characterized by λ. Non-contextuality has been invoked by
setting prs(λ, α, β) = pr(λ, α)ps(λ, β) and by assuming a
probability density ρ(λ) that depends only on the set λ of
hidden variables, i.e., being independent of (α, β).

If instead of using the classical correlations we use the
quantum mechanical ones, as given by equations (12)–(15), we
can predict a violation of the inequality (19). Indeed, observing
that PY (α) = PYV (α, β ′′) + PYH (α, β ′′) = 1/2, PV (β) =
PYV (α′′, β) + PXV (α′′, β) = 1/2 and using (19) we get

SCH = cos2(α − β) − cos2(α − β ′) + cos2(α′ − β)

+ cos2(α′ − β ′) − 2 � 0. (20)

Setting α = −π/4, α′ = −π/2, β = −3π/2, β ′ = 3π/8, we
obtain SCH = 0.207, in contradiction with the prediction of a
HV theory.

As will be explained in detail in the following section, in
our experiment we detect the photons with a single detector
set at the output of the SPA and MZI arrangements (see
figure 2), instead of using the four detectors that appear in
figure 1. In what follows, we justify why—in spite of using a
single detector—we could still have a valid test.
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Figure 2. Experimental setup. Photon pairs produced by parametric
down-conversion with a BBO crystal. We used Glan–Thompson
polarizers (P), half-wave plates (HWP(angle)), optical blanks (B),
mirrors mounted on piezo-driven stages (MP ), and a
geometric-phase shifter (GPS) to manipulate the state of the light.
The GPS consisted of two quarter-wave plates with a half-wave
plate in between. Detector modules (D1, D2) had iris, lens,
band-pass filter and avalanche photodiode.

To the last two terms of equation (19), P cl
Y (α′) and P cl

V (β),
it corresponds the quantum mechanical probabilities PY (α′)
and PV (β), respectively. These last ones can be transformed
in the following way, for any α′′ and β ′′:

PY (α′) = PYV (α′, β ′′) + PYH (α′, β ′′) (21)

PY (α′) = PYV (α′, β ′′) + PYV (α′, β ′′ + π/2) (22)

and

PV (β) = PYV (α′′, β) + PXV (α′′, β) (23)

PV (β) = PYV (α′′, β) + PYV (α′′ + π/2, β). (24)

Under these operations then SCH = SCH(α, α′, α′′, β, β ′, β ′′).
If we pick, for example, α′′ = α and β ′′ = β we get

SCH = −PYV (α, β ′) + PYV (α′, β ′)
−PYV (α′, β ′

⊥) − PYV (α⊥, β), (25)

where we use the notation α⊥ = α + π/2. When α =
−π/4, α′ = −π/2, β = −3π/8 and β ′ = 3π/8 we get
SCH = 0.207, which is a violation of (19). We note that
the form of equation (25) depends on the choice of α′′ and β ′′

in equations (22) and (24), α and β, respectively. Other forms
can be obtained, although they all give the same result for a
given value of angles.

However, inequality (19) was derived without explicitly
assuming that classical probabilities satisfy relations such as
equations (22) and (24), which hold for quantum mechanical
probabilities. Hence, we would not have a valid test of the
CH inequality, unless we prove that equations analogous to
equations (22) and (24) do hold true for classical probabilities.
We argue they do, though we should remark that the class

of hidden-variable models that our test rules out must be
accurately defined. We deal with this matter below.

Let us denote by pY (λ, α) the classical probability for
a photon to follow the Y branch of our apparatus, when the
first MZI was set to α, whereby the hidden variables happened
to take the particular value λ when the photon was emitted.
Similarly, pV (λ, β) means the classical probability for a
photon to have the polarization β when the hidden variables
took the value λ. Let us now set x = pY (λ, α), x ′ = pY (λ, α+
π/2), y = pV (λ, β), y ′ = pV (λ, β + π/2). Replacing these
values in the inequality xy − xy ′ + x ′y + x ′y ′ − x ′ − y � 0,
multiplying the result by ρ(λ) and integrating it over λ, we
obtain

P cl
YV (α, β) − P cl

YV (α, β + π/2) + P cl
YV (α + π/2, β)

+ P cl
YV (α + π/2, β + π/2) − P cl

Y (α + π/2) − P cl
V (β) � 0.

(26)

Here, P cl
YV (α, β) = ∫

dλ ρ(λ)pY (λ, α)pV (λ, β), P cl
Y (α) =∫

dλ ρ(λ)pY (λ, α), P cl
V (β) = ∫

dλ ρ(λ)pV (λ, β). This is the
inequality we have tested and shown that is experimentally
violated, in accordance with the quantum-mechanical
predictions.

We relate SCH to the measurements in the following way.
The measured probabilities are

PYV (α, β) = NYV (α, β)

ηN
, (27)

where NYV (α, β) are the measured detections in a time t0, η is
the detection efficiency and N the number of down-converted
pairs in the time t0. Since η is the same for all measurements
we can define S ′

CH ≡ SCHηN/2, which translates into the
inequality

S ′
CH = −N(α, β ′) + N(α′, β ′) − N(α′, β⊥) − N(α⊥, β) � 0.

(28)

Thus, since the inequality is compared to zero all the
efficiencies cancel out. Such a reduction is generally not
possible with two separate particles because they involve
separate detectors, with joint probabilities containing the
product of efficiencies but singles probabilities containing
only singles efficiencies. In such cases the cancellation of
efficiencies is not complete. For a product of efficiencies
to appear in connection to singles probabilities these should
be expressible in terms of joint probabilities, similarly to
equations (21) and (23). We are not aware of two-particle
experiments in which this condition makes sense. However,
Clauser and Horne (1974) proposed a way to achieve a
cancellation of efficiencies in the two-photon case and some
experiments were in fact performed along these lines, based
on two-photon correlations (Ou and Mandel 1988, Torgerson
et al 1995). Now, in the two-photon experiments performed
by Ou and Mandel the singles probabilities could be replaced
by joint probabilities only under a supplementary assumption,
namely the ‘no-enhancement assumption’ (Clauser and Horne
1974, Ou and Mandel 1988). Under this supposition singles
probabilities are bounded by probabilities corresponding
to measurements in which a change in the experimental
arrangement has been undertaken (a polarizer has been
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removed). Though this is a reasonable assumption, it
further restricts the class of hidden-variable models under test,
because by dropping this additional assumption it becomes
possible to construct realistic models that mimic quantum
mechanics (Clauser and Horne 1974). In our case, we do
not need to invoke the ‘no-enhancement assumption’ for
equations (21) and (23) to hold true, and hence our experiments
test a broader class of non-contextual realistic models, than
previous ones. This includes the experiments of Torgerson
et al (1995). Indeed, although these authors do not invoke
the no-enhancement assumption, they do assume that singles
probabilities satisfy, e.g., P1(θ1) = P12(θ1, θ2) + P12(θ1, θ2 +
π/2), i.e., a condition similar to our equations (22) and (24),
but with P1 referring to measurements at one detector and P12

referring to joint measurements at two different detectors.
In contrast to our case, where only a single detector

is involved, in the two-particle case—with two detectors
involved—the above condition cannot be generally satisfied.
This is because its left-hand side refers to a singles probability
(whose value depends on the efficiency of one detector)
whereas its right-hand side entails joint probabilities (whose
values depend on two independent efficiencies). Excepting
the case of ideal detectors, the above condition would not
be generally satisfied, independently of the fair sampling
assumption that Torgerson et al invoke to justify it. In our
case, the validity of equations (21) and (23) can be safely
stated, though, as already said, we should take care to properly
delimit the class of models that we are putting to the test. In
what follows, we discuss the class of HV models that our test
rules out.

First, we have assumed that, for example, pYV (λ, α, β) =
pY (λ, α)pV (λ, β). This means that the probability for
a photon to follow the Y-branch is for all angles α and
β independent of its polarization state. In a standard
test with polarizers on polarization-correlated photon pairs
the corresponding assumption is a natural one, because
a probability like pYV (λ, α, β) refers to two distant
measurements on two different particles, and locality can
thus be invoked. In our case, locality is not an issue
and the above assumption is based on non-contextuality,
which here amounts to an independence assumption between
the two photon’s degrees of freedom we are dealing with,
i.e., momentum and polarization. On the other hand, our
particular way of measuring the individual probabilities (see
equations (22) and (24)) presupposes that, at the classical
level,

∫
pY (λ, α)ρ(λ) dλ = ∫

pY (λ, α)[pV (λ, β) + pV (λ, β +
π/2)]ρ(λ) dλ for all β. This follows from the assumption that
pV (λ) = pV (λ, β) + pV (λ, β + π/2) = 1, which states that
the probability of detecting a photon equals the sum of two
probabilities, namely the probability of detecting it when the
polarizer is set to an arbitrary angle β, plus the probability of
detecting it when the polarizer is set perpendicularly to the first
orientation, i.e. to an angle β+π/2. While it is an experimental
fact that this relation is true—commonly expressed through
Malus’ law—it should be stated explicitly to properly delimit
the class of HV models being tested. Similar assumptions are
made with respect to the other individual probability, namely
PV (β) = PYV (α, β) + PYV (α + π/2, β), which follows from

pY (λ) = pY (λ, α) + pY (λ, α + π/2) = 1. This last equality
is in accordance with the fact that when �φ = 2α is changed
by π the outputs of the two ports of the MZI are interchanged.
Obviously, the photon must exit the MZI by one or the other
port.

3. Experimental procedure

We carried out the experiments with heralded photons
entangled in spatial and polarization modes with the general
scheme presented in the previous section, but with some
differences noted below. Collinear photon pairs at a
wavelength of 915.8 nm were produced by type-I spontaneous
parametric down conversion of 457.9 nm light from a
continuous-wave argon-ion laser operating at about 200 mW.
The pairs were split by a nonpolarizing beam splitter, as shown
in the apparatus schematic of figure 2. The photons coming
off the reflection port of the beam splitter were sent directly
to a bare avalanche photodiode single-photon detector (D1 in
figure 2) preceded by an iris, a lens and a 10 nm band-pass
filter. The detector had a 30% efficiency at the wavelength of
the down-converted photons.

The polarization of the pump light was set to be
horizontal. A Glan Thompson polarizer ensured the purity
of the polarization. After the down-conversion crystal, a
7 mm long beta–barium–borate crystal, the pump beam and
any stray light from the laser was extinguished by a Glan–
Thompson polarizer set to the vertical direction. As such,
only the vertically-polarized down-converted photons and a
very attenuated fraction of the pump beam passed through
the polarizer. The remaining pump light was blocked by the
band-pass filters in front of the detectors.

The SPA shown in figure 2 had identical zero-order half-
wave plates in each arm. In the top arm, the optic axis of
the wave-plate (HWP(π/4)) was set to π/4 relative to the
vertical so that the polarization of the light passing through
it was flipped to the horizontal direction. The wave plate
in the other arm (HWP(0)) served a dual role. With its
axis oriented vertically, it left the input polarization state
unchanged and served to equalize the two optical paths. In
some experiments the rotation of HWP(0) about the vertical
axis served to adjust the phase δ in equation (7). The two
mirrors of the interferometer were mounted on translation
stages for added flexibility. The optical paths were equalized
via measurements of the interference produced by white light.
(This challenging part of the experiments was necessary due
to the short coherence length of the down-converted light
determined by the detector filters.) A piezo-electric element
served as a spacer in one of the stages for adjusting and
scanning δ. The MZI that followed, which acted as a spatial
basis rotator, was constructed in a similar fashion, with pairs
of identical mirrors on stages at its corners and non-polarizing
beam splitters at the input and output.

Since α = �φ/2 is a critical parameter of these
measurements, we performed experiments that differed in the
way in which �φ was varied. In one set of measurements,
labelled here as setup ‘I’, the phases δ and α were set
by adjusting the piezo-electric spacers on the stages where
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Figure 3. Example of an experimental run used to obtain the value
of α = �φ/2. For the data shown in the figure we varied �φ by
changing the length of one of the arms of the MZI. This was done by
scanning the voltage of a piezo-electric spacer in a stage where one
of the mirrors of the interferometer was mounted.

the corresponding mirrors were mounted (MP in figure 2).
A voltage applied to the piezo-electric elements moved the
corresponding mirrors.

In experiments with the setup labelled ‘II’ the values of
�φ were set by the tilt of a 5 mm optical blank in one of
the arms of the MZI (see figure 2). The optical element was
mounted on a motorized rotation stage. In the other arm, a
fixed identical blank was used to compensate the path lengths
of the two arms. In these experiments δ was also set by tilting
HWP(0), as mentioned earlier. The voltage of the piezo-
electric spacers was kept at zero.

The values of α were determined by calibration runs done
before every measurement. An example of a calibration run is
shown in figure 3.

The calibration for α was done by blocking the x input
of MZI and by scanning the voltage on the piezo-electric, or
the tilt of the rotating optical flat. We determined the settings
α = 0, α = ±π/4 and α = π/2 by locating the angles where
we got the maximum, half-maximum and minimum counts in
the interference output, respectively. We did these calibrations
with the singles counts, which were typically 70 000 at maxima
and 4000 at minima. We did so on the singles because these
were in phase with the coincidence counts and typically a
factor of a 100 larger in value. We did fits to the data and
determined the uncertainty in alpha to be 2◦.

Recording the measurements of each of the ports of
the apparatus can give us the probabilities that we need
for calculating S. However, more practical is to measure
a single set of projections and appeal to the fair sampling
assumption. This can be done because all of the projections of
equations (12)–(15) can be obtained with a single detector
via the following relations: PYH (α, β) = PYV (α, β −
π/2), PXV (α, β) = PYV (α−π/2, β), PXH (α, β) = PYV (α−
π/2, β−π/2). We could exploit this fact and still obtain a valid
test of realistic non-contextual HV theories, as was explained
before. By using one detector we also avoided the problem of
detectors with different efficiencies.

The use of one detector allowed us to directly project the
state of polarization of the light into a rotated basis using a
rotating polarizer. Past the y output port of the MZI we had a
Glan–Thompson polarizer followed by a detector arrangement
(D2 in figure 2) similar to that used for detecting the heralding
photons. The value of β was obtained by the angular position
of the Glan–Thompson polarizer, which had an uncertainty
of 0.5◦.

There was an additional technical problem that arose. As
mentioned earlier, the y output port of the MZI was chosen
for making the spatial projection of the light. The vertically
polarized light entered and excited the interferometer through
the y ports. However, horizontally polarized light entered
through the x input port and excited through the y output port.
We found that non-ideal reflection phases inserted a phase
between the horizontal and vertical components of the light
leaving the MZI.

In one version of our setup we placed a geometric-phase
shifter after the MZI, as shown in figure 2. The phase shifter
consisted of two quarter-wave plates oriented at the same
angle of π/4 with respect to the horizontal, with a half-wave
plate in between. By setting the half-wave plate to an angle
θ , the three-element device inserted a Pancharatnam–Berry
geometric phase of 4θ between the horizontal and vertical
components of the light input to it (Martinelli and Vavassori
1990). This adjustment allowed us to cancel the non-ideal
reflection phases of the interferometer by finding the geometric
phase that yielded the highest visibility when the polarizer
setting was β = π/4. In other experiments we removed the
phase shifter and instead adjusted the value of δ to compensate
for the nonideal phases.

4. Results

4.1. Clauser–Horne–Shimony–Holt violation

We made several measurements of spatial-polarization
correlations leading to a value of the SCHSH correlation
parameter of the CHSH inequality. We considered the
following settings of the spatial and polarization projections
that lead to a violation of the CHSH inequality for normalized
correlation functions: α = −π/4, α′ = −π/2, β = −3π/8
and β ′ = 3π/8.

The values of α were set differently in setups I and II,
as mentioned earlier. The values of the correlation parameter
SCHSH for measurements using setups I and II were 2.77 ±
0.06 and 2.47 ± 0.06, respectively. Both cases I and II violate
the inequality by 12 and 7 standard deviations, respectively.
Figure 4 shows data (symbols) on the correlations that led to
the violation using setup II. The solid line is a fit of the data
taken with A{1 + V cos[(α − β)/2]}, where the amplitude A

and the visibility V were the fitted parameters. The latter was
V = 0.89±0.03. If we were to use the fitted values we would
get SCHSH = 2.51 ± 0.06.

In an effort to test our procedures we did a measurement
of the S parameter of the CHSH inequality for a case where
the inequality is not violated. By considering the angles
α = −π/3, α′ = −π/6, β = 0 and β ′ = π/4 the quantum-
mechanical prediction is SCHSH = 0. A measurement using
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Figure 4. Data (symbols) obtained with setup II that was used to
compute the correlation parameter SCHSH that violated the CHSH
inequality. The solid line is a single parameter fit to the data.

Table 1. Measured values of S ′
CH for different values of α′′ and β ′′ in

equations (22) and (24).

α′′ β ′′ S ′
CH

α β 1343 ± 63
α β ′ 1181 ± 61
α′ β 1543 ± 93
α′ β ′ 1381 ± 61

setup II gave SCHSH = −0.19 ± 0.07, which is consistent with
the expectation that for these values of the angles the inequality
was satisfied. A fit to the data similar to that of figure 4 gave
V = 0.78±0.02; we also got SCHSH = 0±0.07 with the fitted
values.

4.2. Clauser–Horne inequality violation

We tested the CH inequality with our data as described earlier.
The form of the CH inequality in equation (25) was obtained
by using α′′ = α and β ′′ = β in equations (22) and (24). Our
result using this form of the CH inequality (equation (28)) is
listed in the first row of table 1. These measurements used
setup I for the case α = −π/4, α′ = −π/2, β = −3π/8
and β ′ = 3π/8. We got results for other equivalent forms
of SCH obtained by using different choices of α′′ and β ′′

listed in the other rows of table 1. The weighted average
of the measurements is 1333 ± 21, where the uncertainty is
the standard deviation of the mean. This is a violation of the
CH inequality by more than 63 standard deviations. We note
that the same apparatus and signals give us a greater violation
with the CH inequality than with the CHSH inequality.

Finally, given that we perform consecutive measurements
at different angles, and given that we do not have perfect
efficiencies, we have to appeal to the fair sampling assumption,
i.e., that our measurements are representative of what would
have been obtained with simultaneous detections and perfect
efficiencies.

5. Conclusions

In summary, we have presented two violations of CHSH and
CH inequalities with single photons bearing two qubits. These
violations rule out a broad class of realistic non-contextual HV
theories in favor of quantum mechanics. We performed the
tests of the CHSH and the CH inequalities with one and the
same setup. The test of the CH inequality is new and provides
a more stringent test than that of the CHSH inequality. It
removes some of the objections that have been raised to the
large group of CHSH inequality violations with normalized
correlation parameters (Santos 2004).

It is interesting to note that by enabling another degree
of freedom to the photon, e.g., by using the spatial modes of
the light, which carry orbital angular momentum, we could
perform the all-or-nothing Greenberger–Horne–Zeilinger test
(Greenberger et al 1989) with a single particle. This would
open new doors to tests of non-contextual HV theories with
single particles.
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