
Lab 3c Single-Photon Interference - Week 6

Phys434L Quantum Mechanics Lab
2018

March 13, 2018

1 Theory

We use a Mach-Zehnder interferometer. The interferometer has two 50-50 beam splitters
and two mirrors. Consider the interferometer shown in the Fig. 1. Suppose the a photon

Figure 1: A Mach-Zehnder interferometer.

with a normalized wave-function |φ0〉 = |φx〉 is incident on the interferometer from A
traveling along the x−direction. Eventually the photon will exit through either port B or
port C. Thus, the final wavefunction past the second beam splitter will be

|φ′0〉 = b|φx〉+ c|φy〉, (1)

where |φx〉 and |φy〉 are the normalized wavefunctions for the photon going in the directions
x and y, respectively. The complex coefficients b and c are the probability amplitudes for
the photon going through ports B and C, respectively. Normalization thus implies that

b∗b+ c∗c = 1. (2)
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To construct expressions for b and c we need to consider how the photon gets to B and
C. Since the optical components of the interferometer affect the light as it goes through
them, then quantum mechanically we will represent them by operators. The beam-splitters
either reflect or transmit a photon. The operators for a beam-splitter applied to the state
vectors are

B̂|φx〉 = r|φy〉+ t|φx〉 (3)

B̂|φy〉 = t|φy〉+ r|φx〉. (4)

where r = i/
√

2 and t = 1/
√

2. Notice that the probabilities for being reflected or trans-
mitted are 1/2, and that reflection carries a phase ot π/2.

Question 1 In Lab: If the matrix representation of the state vectors is

|φx〉 =

(
1
0

)
(5)

and

|φy〉 =

(
0
1

)
, (6)

what is the matrix representing B̂?

The mirrors change the direction of the photon, or swap the eigenstates, so they are
represented by the operator M̂

M̂|φx〉 = |φy〉 (7)

M̂|φy〉 = |φx〉. (8)

Question 2 In lab: Construct the matrix representing M̂.

Because the arms of the interferometer have in general different lengths, we will create
an operator for the propagation of the light through each arm of the interferometer. The
“arm-propagating” operator will be:

Â =

(
ei2π`1/λ 0

0 ei2π`2/λ

)
, (9)

where `i is the length of distance traveled in arm i. The arm operator is unitary, so the
state vectors are eigenstates of the arm-propagating operator.

The State of the light after the interferometer is

|φ′0〉 = Ẑ|φ0〉 (10)

where
Ẑ = B̂ÂM̂B̂ (11)
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Question 3 Take home: Find an expression for Ẑ (Mathematica is ideal for this).

Question 4 Take home: What is the wave-function of the photon past the second beam
splitter? (Use matrix notation.)

What does this mean?
We start with the photon in a state. The first beam splitter puts the photon in a

superposition of states. The second beam splitter puts the state of the light also into a
superposition of output states. When we do a measurement the probability amplitude is
not a constant number: the total probability amplitude for going to B is the superposition
of the probability amplitudes for going through both arms. The probability of going to B
shows interference. The interesting part of this is that in quantum mechanics superposition
means that the path that the photon takes is undefined. If the photon is one whole thing
how could that be? Note that this is not particular to photons. One could do superposition
of electrons, atoms, etc. Scientists in Vienna have done interference experiments with
buckyballs.

Question 5 Take home:
Find simplified expressions for b and c (see Eq. 1.)

When we put a detector in the direction x after the interferometer we are effectively applying
the projector operator associated to path x:

P̂X = |φx〉〈φx|. (12)

Question 6 Take home: Find the matrix for P̂X .

Question 7 Take home: Show that the probability that the photon be at B is

PB = b∗b =
1

2
(1 + cos δ), (13)

where δ = 2π(`1 − `2)/λ.

Question 8 In lab: What is the probability of the photon being in C after going through
the interferometer? Consider the conservation of probability.

In summary, a consequence of superposition is quantum interference. By offering al-
ternative paths, the interferometer naturally produces superposition. There is something
different about the two paths: they could have different length. Thus if we vary the dif-
ference in lengths, we vary δ, and therefore the probability is going to oscillate between
0 and 1. In the lab we will change δ by changing `2. We do this by pushing one of the
mirrors very slightly (i.e., a few optical periods in very small increments). We accomplish
this by means of a piezo-electric ceramic, which expands when a voltage is applied to it.
The computer sends the voltage to the piezo in a stepwise manner so that we can scan δ.
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2 Apparatus

The apparatus that we will use is shown in Fig. 2.

Figure 2: Apparatus to be used in the experiments. Optical elements of the interferometer
are: beam splitters (BS), mirrors (M), with one of them mounted on a translation stage
(TS). The photon-collection system has a 40-nm band-pass filter (F), a lens-collimator (C),
and an optical fiber (OF). Photons are sent throughout the fiber to the detectors.

3 Procedure

The apparatus should be aligned from the previous lab. Once we are ready to detect single
photons we turn the lights off and then we plug the detectors. Your tasks are the following:

1. Use the program “Continuouscounting” to verify that you are getting interference.
Block one of the arms and maximize the counts by tilting the collimator for B.

2. Switch the electrical cables for B and C and do the same for the collimator C.

3. Flip the cables back and use the program “Quantum eraser” to take a scan of the
piezo-electric that changes the phase of the interference program. Use the default
values. The instructor will help you improve the visibility of the interference.

4. Now use the program “ContinuousCountingArduino.” In this program you can step
the voltage of the piezo by hand on the program’s graphical interface. Change it so
that you are at a mimimum in the interference pattern. Block one of the arms with
a card. What do you observe? Does it make sense? Can you explain it?
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5. Using the program “TripleContinuousCountingArduino” take a fast scan. It will show
the counts at detectors A B and C, and the coincidences AB, AC and ABC. Once
you are satisfied that it is all working, take a long scan of, say 3 s or more per point.

Question 9 Compare the graphs of AB, AC and reflect on the physics of the phe-
nomenon you are observing. For the report show the two in a single graph. Remember
to include error bars.

Question 10 What information do you get from the graph of ABC?

6. Devise a new experiment: a measurement (scan or not) that illustrates the predictions
of quantum mechanics or quantum physics in general.
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