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1 Procedure for 3/26

1.1 Experiment: Aligning the components of the interferometer.

1. Using the HeNe laser place and align the waveplates into the arms of the interferom-
eter.

2. Place the polarizer after the interferometer and put guides so that it can be put in
and out without realignment.

3. Align the interferometer so that it shows no horizontal or vertical fringes (where do
they arise?), but has one big fringe that appears or disappears with the changing
phase.

4. With the help of the instructor align the interferometer so that it exhibits the least
number of “white-light fringes.” This step will involve a slight readjustment of the
micrometer of the translation stage.

2 Larger Hilbert Spaces

2.1 Theory

A thorough description of the experiment is done using a formalism that combines the

space of spatial directions, with the eigenstates |φx〉 =

(
1
0

)
and |φy〉 =

(
0
1

)
, and

polarization, with the eigenstates |H〉 and |V 〉, as shown earlier. The space of direction of
propagation is two dimensional, a qubit; and the space of states of polarization is also two
dimensional, another qubit. Thus we have 2 qubits. Quantum mechanics has a method
to generate vectors and operator matrices of combined Hilbert spaces: it involves the
tensor product, which is denoted by the symbol ⊗. In the tensor product operation, we
multiply each element of one space (propagation direction) to each element of the other

1



space (polarization). The ordering of spaces in the tensor product is important. In our
case, we will order direction of propagation first, and polarization second.

For example, if we have a vector |A〉 in the space of propagation directions, and a vector
|B〉 in the space of polarization, the tensor product of two vectors is:

|AB〉 = |A〉 ⊗ |B〉 =

(
a1
a2

)
⊗
(
b1
b2

)
=

 a1

(
b1
b2

)
a2

(
b1
b2

)
 =


a1b1
a1b2
a2b1
a2b2

 .

The eigenstates of our experiment are then:

|φx, H〉 = |φx〉 ⊗ |H〉 =

(
1
0

)
⊗
(

1
0

)
=


1
0
0
0

 ,

|φx, V 〉 = |φx〉 ⊗ |V 〉 =

(
1
0

)
⊗
(

0
1

)
=


0
1
0
0

 .

Question 1 In-lab: Find the vectors for |φy, H〉 and |φy, V 〉.

The matrices for the operators in the larger space are the tensor product of the matrices
of the operators that act on each space. For example, an operator in the direction of
propagation space, Â, combines with an operator in the polarization space, B̂, the following
way:

Â⊗ B̂ =

(
a1 a2
a3 a4

)
⊗
(
b1 b2
b3 b4

)
= a1

(
b1 b2
b3 b4

)
a2

(
b1 b2
b3 b4

)
a3

(
b1 b2
b3 b4

)
a4

(
b1 b2
b3 b4

)
 =


a1b1 a1b2 a2b1 a2b2
a1b3 a1b4 a2b3 a2b4
a3b1 a3b2 a4b1 a4b2
a3b3 a3b4 a4b3 a4b4


Notice that the ordering procedure for the elements of the matrix is the same as for elements
of the vectors.

Using the tensor product we can also construct the matrices for the interferometer. The
beam splitter acts on one space and not the other, so it will be the tensor product of the
beam-splitter matrix (first) with the identity (second). We put identity for the polarization
part because the beam splitter does not alter the polarization. The matrix for the beam
splitter in the larger space will be:

B̂2 = B̂1 ⊗ 1̂ =

(
t r
r t

)
⊗
(

1 0
0 1

)
=


t 0 r 0
0 t 0 r
r 0 t 0
0 r 0 t

 ,
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where t = 1/
√

2 and r = i/
√

2.

Question 2 Take-home: Verify that the beam-splitter operator B̂2 acting |φx, V 〉 does not
alter the polarization of the state.

Question 3 In-lab: Find the matrix M̂2 for the mirrors of the interferometer: M̂1 ⊗ 1̂.

Question 4 Find the matrix for the interferometer phase: Â2, where δ is the phase differ-
ence between the two arms, and:

Â1 =

(
1 0
0 eiδ

)
.

The quantum eraser has two wave plates in the arms of the interferometer. The matrix
representing the half wave plate in the upper arm with angle θ and a half-wave plate with
θ = 0 in the lower arm is:

Ŵ2(θ, 0) =


cos 2θ sin 2θ 0 0
sin 2θ − cos 2θ 0 0

0 0 1 0
0 0 0 −1

 , (1)

Question 5 Take-home: Find an expression for the full interferometer matrix (laborious):
Ẑ = B̂2Ŵ2(θ, 0)Â2M̂2B̂2. (You could use Matlab or Mathematica.)

Question 6 Take-home: Verify that when θ = π/4

Ẑ2 =
1

2


ieiδ i ieiδ 1
i −ieiδ 1 eiδ

ieiδ −1 ieiδ i
i −eiδ i −ieiδ

 , (2)

Question 7 Take-home: Calculate the probability of photons in state |φx, V 〉, and entering
the interferometer with the waveplate at θ = 0, exit the interferometer in the same state.

Question 8 Take-home: Find the final state of the light when the wave plate is rotated
an angle θ.
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Figure 1: Schematic of the setup to recreate the quantum eraser. The numbers in paren-
thesis refer to the numbered steps in the procedure. Additional optical elements include
half-wave plates (H) and a polarizer (P).

Question 9 Take-home: Find the probability of the photon leaving the interferometer in
the x-direction and with polarization vertical, as a function of θ.

Question 10 In class: Find the probability that the photon leaving the interferometer in
the x-direction and with polarization vertical, for θ = π/4.

Question 11 In class: Find the probability that the photon leaving the interferometer in
the x-direction and with polarization diagonal, for θ = π/4.

1. Place half-wave plates in each arm of the interferometer, and set both to zero degrees.
We use two half-wave plates because one alone would imbalance the optical path
length of the two arms. One of them serves only to compensate for the added path
length introduced by the other one. The full setup should look like the one in Fig. 1.

2. Do a piezo scan. It should show high-visibility fringes.

3. Rotate one of the waveplates by 45◦. Redo the scan. It should show no fringes.

4. Place the polarizer (H) tilted 45◦ after the interferometer. Redo the scan. Fringes in
DB should reappear at half the amplitude.
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