
Chapter 20

Entanglement

20.1 Bohr vs. Einstein

The story of the birth of quantum mechanics could not be a more interesting
tale. It started with the mounting evidence that our view of atomic phenomena
had to change. Niels Bohr felt deeply about this. Earlier in the 20th century
Max Plank and Albert Einstein had de¯ned the quantum of light to success-
fully explain the radiation of black body and the photoelectric e®ect. Then Bohr
goes to work with Ernest Rutherford when Rutherford puts forth the model of
the atomic nucleus. This led Bohr to develop an atomic model that explaned
the line spectra of hydrogen. But Bohr's model had limitations, and did not
explain the mounting evidence for the duality of light and matter. Recogniz-
ing that the description of atomic phenomena required a new approach, Bohr
headed in Copenhagen the Institute for Atomic Studies. This institute became
the birthplace of quantum mechanics, harboring important contributors to the
theory, such as Werner Heisenberg, Max Born, Wolfgang Pauli, Paul Dirac and
others. The theories of quantum mechanics came to fruition in the years 1925-
1926, with important contributions by Heisenberg and Erwin Schrodinger, in
Germany.

Bohr stated that one of the cornerstones of the new theory was the wave-
particle duality. He maintained that it rested on the principle of complemen-
tarity, that the wave and particle pictures are \complementary" to each other.
That is, they are mutually exclusive, yet essential for a complete description of
quantum phenomena. In the case of a double-slit experiments, if we choose not
to inquire which arm the photon goes through (wave aspect) we ¯nd interfer-
ence. If we determine through which arm the photon goes (particle aspect) we
see no interference.

Quantum mechanics got a major exposure at the Solvay conference of 1927.
The conference was famous for Einstein's challenges to the quantum theory,
which were directed at Bohr. Figure 20.1 shows a photograph of the participants,
which shows that it was quite a distinguished group.

Einstein's challenges came in terms of his famous gedanken or \thought"
experiments. One of Einstein's challenges concerned a particle or photon going
through a pair of slits. In this famous thought experiment depicted in Fig. 20.2,
a plate with a pair of slits was on rollers such that we could measure the kick
that a photon gave to the slit. This would lead us to determine the slit that the
photon took in going to the screen where the interference pattern is formed. It
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Figure 20.1: Participants of the 1927 Solvay conference. Front Row: I. Lang-
muir, M. Planck, Mme. Curie, H.A. Lorentz, A. Einstein, P. Langevin, Ch. E.
Guye, C.T.R. Wilson, O.W. Richardson Middle Row: P. Debye, M. Knudsen,
W.L. Bragg, H.A. Kramers, P.A.M. Dirac, A.H. Compton, L. de Broglie, M.
Born, N. Bohr Back Row: A. Piccard, E. Henriot, P. Ehrenfest, Ed. Herzen,
Th. De Donder, E. Schrodinger, E. Verscha®elt, W. Pauli, W. Heisenberg, R.H.
Fowler, L. Brillouin. Photo AIP.

would violate complementarity.

Exercise 1 For simplicity in our calculations assume that the photons hit the
pair of slits coming parallel from the left. They come with a momentum p.

1. Find the tangent of the angle of de°ection 1 of the photon if it goes through
the top slit in terms of y, d and L. (Ans: tanµ1 = (y ¡ d=2)=L)

2. Do the same for the angle of de°ection 2 of the photon going through the
bottom slit. (Ans: tanµ2 = (y + d=2)=L)

3. The photon gets a momentum kick that adds a transverse component
to the momentum of the photon py without a®ecting the longitudinal
momentum p. To tell which slit the photon takes we need to be able to
measure a momentum kick smaller than the di®erence in the momentum
kicks. Find an expression for the di®erence in momentum kicks (p2y¡p1y ).
To simplify things let's further assume that the screen on the right is far
enough away that the small-angle approximation is valid. (Ans: ¢py =
pd=L)

4. Bohr responded the next day by arguing that allowing the slits to move
for determining the slit that the photon goes through gives uncontrollable
shifts to the slits, destroying the interference pattern. Une could see this
via the uncertainty principle. Let's go over his argument.

(a) To distinguish the kicks from each other we need an uncertainty no
less than ¢py = p2y ¡ p1y . An uncertainty ¢py implies that we
would have an uncertainty ¢y ¸ h=¢py. That is, the uncertainty
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Figure 20.2: Diagram of Einstein's thought experiment.

principle reveals that the momentum kick on the slits will result in
an uncertainty in the position of the slits greater than h=¢py . Find
an expression for this value in terms of the variables of the apparatus
and the wavelength of the photon. (Ans: h=¢py = L¸=d)

(b) Regarding the interference pattern:

i. Show that in the small-angle approximation, the position of the
n-th maximum is yn = nL=d.

ii. Using the previous result ¯nd the di®erence in positions of adja-
cent maxima ±y = yn ¡ yn¡1. (Ans: ±y = ¸L=d)

If we put the uncertainty relation for ¢y in terms of ±y we get ¢y ¸ ±y. Thus,
we can understand that the pattern gets blurred because the uncertainty in
the slit position (due to uncontrollable kicks) is greater than the separation of
maxima of the interference pattern.

20.2 Energy-time uncertainty
Let's consider another consequence of the uncertainty relation as it relates to
the photon. A photon can be viewed as a \wavepacket." This is a photon with
a wavelength that is not perfectly de¯ned. It has a spread ¢¸.

Exercise 2 Consider the following:

1. The spread ¢¸ implies a spread ¢p. It can be shown that when two vari-
ables are inversely proportional, like p = h=¸, their relative uncertainties
are equal: ¢p=p = ¢¸=¸ Find an expression for ¢p in terms of ¢¸ and
.̧ (Ans: h¢¸=¸2)

2. Use the uncertainty principle to ¯nd the uncertainty in the position of the
photon ¢x, or the length of the wavepacket. This quantity is also known
as the "coherence length." (Ans: ¸2=(2¼¢¸))

There are important consequences to the ¯nite length of the wavepacket as it
relates to the distinguishability of a photon going through an interferometer.
For example, suppose that we send a 916-nm photon with a wavelength spread
¢¸ = 0:1 nm to an Mach-Zehnder interferometer. If the arms are nearly the
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same the paths are indistinguishable. If we increase the length of the arms
so that they di®er by more than the length of the wavepacket, then the paths
become distinguishable. This is because a photon going through the shorter
arm will arrive to the detector noticeably earlier than going through the longer
arm.

Exercise 3 What is the length of the wavepacket? (Ans. 1.33 mm)

Exercise 4 What is the temporal spread ¢t of the photon? (It is traveling
with a speed c.) (Ans: 4.45 ps)

If we use E = pc, ¢x = c¢t and the position-momentum uncertainty principle
¢x¢p ¸ ¹h we get the time-energy uncertainty relation:

¢E¢t ¸ ¹h (20.1)

.

20.3 Delayed Choice
The thought experiment of Einstein on the moving slits is one example of the
blurring of the interference pattern by the action of measurement. Measurement
disturbs the system in an uncontrollable way that makes the interference pattern
disappear. Bohr justī ed this using the uncertainty principle.

If we focus on the quantum eraser experiment, we ¯nd that the action of
rotating the polarization of the light makes the path information available. This
is done by entangling the information with the measurement apparatus. When
we put the polarizer after the interferometer we are selecting out the path in-
formation. This is done not by disturbing the system but by making the path
information unavailable. When the path information is present there is no in-
terference. When we choose not to have the path information available we
regain the interference. This e®ect of manipulatine the information is known as
\delayed choice."

20.4 The EPR paradox
Back to Einstein and Bohr, there was one more subsequent conference, also at
Solvay, in 1930, where Einstein challenged Bohr with another gedankenexper-
iment. Similarly to the 1027 conference Bohr was able to refute this thought
experiment too. We will not discuss it here. However, in 1935 Einstein, Podol-
ski and Rosen published in Physical Review a now famous article presenting yet
another thought experiment. However, this time Bohr was not able to demon-
strate the inadequacy of this one. This thought experiment became known as
the \EPR" paradox. It presented a situation where quantum mechanics and
realistic theories would predict distinct views. However, there was no apparent
way to prove either way. At least not until 1964, when John Bell published the
basis for a test that distinguished the two views. This test has become known
as Bell's inequalities. In the last twenty years numerous experiments have veri-
¯ed a violation of these inequalities. In all cases the results of the experiments
favored quantum mechanics.
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20.5 Entanglement

The EPR paradox relies on entangled states of two particles. Before discussing
the paradox lets discuss a modern realization of entangled states. These states
can be created using correlated particles. There are many ways of producing
correlated particles. One way involves the production of photon pairs in the
process of parametric down conversion. In this process, a photon is incident on
a nonlinear crystal producing pairs of photons. This is shown in Fig. 20.3. We
label the incident photon the \pump," and the two down-converted photons as
1 and 2.

Figure 20.3: Diagram of spontaneous parametric down conversion.

These photons are correlated in the following ways:

² Energy correlation. The energies of the down-converted photons add up to
the energy to the pump photon: Epump = E1+E2. In our experiments (see
quantum eraser lab) we have a pump photon with a wavelength of 457.9
nm. While down-conversion produces a large range of photon pairs with
complementary energies, for simplicity we work with the \degenerate"
photons (i.e., that have the same energy), and thus a wavelength of 915.8
nm.

² Momentum correlation. The momentum of the photons is conserved:
ppump = p1 + p2. Since we work with the photons that have the same
energy, they come out at the same angle relative to the incident beam. In
the lab this angle is 3 degrees.

² Time correlation. The photons are produced simultaneously. We use this
fact in the detection of the down-converted photons: we detect coinci-
dences. This way we are able to separate down-converted photons from
all other stray photons.

² Polarization correlation. In our experiments the down-converted photons
coming from a single crystal have the same polarization.

While our photons are correlated, they are not necessarily entangled. Sup-
pose that we have two photons that are vertically polarized. We can analyze
the polarization correlation by detecting the photons after they pass through
polarizers. Figure 20.4 shows a schematic of the experiment. The polarizers
P1 and P2 have their transmission axes oriented at angles µ1 and µ2 relative
to the vertical, respectively. The circle represents the down-conversion source.
Because the photons are correlated the probability amplitude that both photons
get detected is given by

ÁV V = cos µ1 cos µ2: (20.2)
The probability is, as always, the square of the probability amplitude. The state
referred to by equation 20.2 is a \product state." It is the same as a classical
source, because we know the polarization of the photons all along.
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Figure 20.4: Schematic of the experiment to do polarization measurements on
correlated photons.

Exercise 5 Show that the probability amplitude when both photons are hori-
zontal is given by

ÁHH = sin µ1 sin µ2: (20.3)

To be entangled the photons have to be in a superposition of possibilities.
We can create this situation using a clever trick invented recently and shown in
Fig. 20.5. We get two crystals: a ¯rst one produces photons that are horizon-

Figure 20.5: Diagram of the method of producing polarization entangled states.
Two thin crystals produce correlated photons that are horizontally polarized
(top), and vertically polarized (middle). They are put together in a new arrange-
ment (bottom) that produces photons that are entangled: in a superposition of
being horizontal and vertical.

tally polarized and a second one produces pairs that are vertically polarized.
By putting the two crystals together we create a new situation that produces
photons in the two polarizations. Because the width of the crystals is much
smaller than the width of the beam there is no way to tell in which crystal the
photons got created. As a consequence the photon pairs are in a superposition
of being both horizontal and vertical.

If we repeat the experiment of Fig. 20.4, we ¯nd that because the photons
are entangled the probability amplitude of detecting the photons is

ÁE =
1p
2
(ÁHH + ÁV V ): (20.4)
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While Eq. 20.4 refers to the probability amplitude of detection, let's refer to
this entangled state as the state HH+VV. If we replace the expressions from
Eqs. 20.2 and 20.3 we get

ÁE =
1p
2
(cos µ1 cos µ2 + sin µ1 sin µ1): (20.5)

After simplifying we get

ÁE =
1p
2

cos(µ1 ¡ µ2): (20.6)

Exercise 6 The photons in the entangled state HH+VV go through the two
polarizers of Fig. 20.4. Fill the table below:

µ1 µ2 ÁE PE = jÁE j2
0± 0±

0± 90±

90± 90±

+45± +45±

+45± -45±

Note that the entangled state is not a classical state. By this we mean
that we cannot compute the probabilities and later add them. We ¯rst add the
amplitudes and then compute the probabilities.

Notice also something peculiar about Eq. 20.6. The probability is a maxi-
mum when µ1 = µ2. This means that the entangled state of Eq. 20.6 is much
more that what it seems. The HH+VV entangled state is not jut the superpo-
sition of photons polarized horizontally with photons polarized vertically. It is
a state of photons that are parallel to each other regardless of the orientation.
Moreover, quantum mechanics implies that the photon pair is in a superposi-
tion of all parallel orientations until a measurement is made. Once we do the
measurement on both, then they have a de¯nite polarization state and they are
no longer entangled.

From the above discussion then if we alow one photon to pass through a
polarizer, then we immediately know the polarization of the partner photon,
wherever it is! Einstein could not believe this, and called it: spukhafte fern-
wirkun, or \spooky action at a distance."

This strange property of quantum systems is exploited today in quantum
cryptography, a technology to establish secure communications. In quantum
communications we refer to the sender of information as \Alice," and the re-
ceiver as \Bob." Consider the situation shown in the diagram of Fig. 20.6. Alice
has an entangled source and takes one of the photons and passes it through a
polarizer and detector. The other photon is sent to Bob, who is a long distance
away.

Exercise 7 Alice in Fig. 20.6 sends a photon to Bob that is entangled with
hers.

1. If she detects a photon when her polarizer is horizontal, what is the prob-
ability that Bob will detect a photon if his polarizer is

(a) horizontal,
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Figure 20.6: Diagram of the method of doing secure communications using
entangled states.

(b) vertical,

(c) +45±,

(d) -45±

(Ans: 1, 0, 1/2, 1/2)

2. Alice detects a sequence of 8 photons with her polarizer set to the orien-
tations shown in the table below. In turn, Bob independently detect the
partner photons with his polarizer set to the values shown in the table.

µAlice µBob Agreement?
horizontal vertical
vertical vertical
vertical +45±

+45± -45±

-45± -45±

vertical vertical
+45± vertical
+45± horizontal

Later Bob and Alice compare the settings of their polarizers. For which
cases will they agree with certainty that they got the photon partners?

The interesting aspect of this type of communication is that an eavesdropper,
\Eve," has no choice but to absorb the photon on its way to Bob in order to
intercept the communication,and re-emit one. However, this action removes the
correlation between the photon that Bob receives with Alice's.

One ¯nal remark about polarization-entangled states. The state HH+VV
that we considered is only one of several possibilities. Another one is the state
HV-VH, in which the photons are in a state where their polarizations are always
perpendicular to each other, regardless of the orientation.

20.6 Problems

Problem 1 At the 1927 Solvay meeting Bohr argued against Einstein's gedanken-
experiment on the interference with a slits on rollers. Explain how Bohr used
the uncertainty principle to refute Einstein.
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Problem 2 What equivalence did Bohr ¯nd between the uncertainty principle
and di®raction? Explain the basis for this equivalence.

Problem 3 A sodium atom in its excited state has a \lifetime" of 16 ns. One
can view this lifetime as the uncertainty in the time at which a photon is emitted.
The wavelength of the emitted photon is 590 nm.

1. When two variables x and y are inversely related as in x = c=y, where c
is a constant, Using derivatives ¯nd a relation between the changes in x
and y, ¢x and ¢y. Note: the answer is NOT: ¢x = c=¢y.

2. If the wavelength of a photon is uncertain by an amount ¢¸, we can use
the type of relation you found in (a) to ¯nd the corresponding uncertainty
in the energy ¢E . Find an expression for ¢E in terms of ¢¸, ¸ and any
relevant constants.

3. Using the energy uncertainty relation ¢E¢t > ¹h, ¯nd the uncertainty in
the wavelength of the photon emitted by the sodium atom.

4. One can view the uncertainty in the time of emission of the photon as an
inherent temporal spread of the photon: the photon is a \wave packet"
with a temporal width ¢t. If the photon travels at a speed c, what is the
spatial length of the wave packet?

5. If the light entering a Mach-Zehnder interferometer is made of these pho-
tons. How is it that we can make the paths distinguishable without touch-
ing the polarization of the photon?

Problem 4 Consider the experiment of Fig. 20.4.

1. If photon 1 is vertically polarized, and photon 2 is horizontally polarized,
what is the probability amplitude ÁHV for joint detections it polarizers 1
and 2 have their transmission axes oriented at angles µ1 and µ2 relatinve
t the vertical.

2. Now consider the case where the photons are in the entangled state HV-
VH. In this case the probability amplitude for joint detections is

Á =
1p
2

(ÁHV ¡ ÁV H ) (20.7)

Show that the probability for joint detections is

Á =
1p
2

sin(µ1 ¡ µ2) (20.8)

The probability of joint detection is a maximum when the polarizations of
the two photons are perpendicular to each other, regardless of their overall
orientation.


