
Chapter 19

Photons and Quantum
Mechanics

19.1 Interference of quanta

You have seen that light sometimes behaves like a wave and sometimes like a
particle. When laser light passes through slits it produces interference fringes.
When the intensity is cut down signi¯cantly we start to reach the limit when
light is made of small lumps, photons. Reducing the intensity further only
reduces the frequency at which these come, but not the size of the lumps.

Exercise 1 A \bright" source of single photons sends about 106 photons per
second. If these photons are evenly separated in a stream, what is the distance
between photons? (Ans: 300 m)

A fundamental principle of quantum mechanics is superposition. If an event
can occur in several alternate ways that are indistinguishable, then the probabil-
ity amplitude for such an event is the superposition of the probability amplitudes
for each way. Note however, that by this quantum mechanics means that the
event occurs in all ways simultaneously.

Feynman summarized the quantum mechanics of alternate paths in three
simple rules:1

1. The probability of an event in an ideal experiment is given by the square
of the absolute value of a complex number Á which is called the probability
amplitude:

P = jÁj2; (19.1)

2. When an event can occur in several alternative ways, the probability am-
plitude for some event is the sum of the probability amplitudes for each
way considered separately:

P = jÁ1 + Á2j2; (19.2)

1R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics (Addison-
Wesley, Reading, 1965) V. 3, p. 1-1.
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3. When an experiment is performed which is capable of determining whether
one or another alternative path is actually taken, the probability of the
event is the sum of the probabilities for each alternative:

P = P1 + P2 = jÁ1j2 + jÁ2j2: (19.3)

In the case of a photon going through the Mach-Zehnder interferometer
shown in Fig. 19.1, if the paths are indistinguishable the probability amplitude
in going from A to B is the superposition of the probability amplitudes in going
through each arm, Á1 and Á2.

Figure 19.1: Diagram of a Mach-Zehnder interferometer.

The beam-splitters (BS) used in the interferometer re°ect half of the in-
tensity and transmit half of the intensity. Thus the probability of a photon
being re°ected or transmitted is 1/2. Since the probability is the square of
the probability amplitude, then the probability amplitude of being re°ected or
transmitted is 1=

p
2.

Suppose that we block arm 2. The probability amplitude of the photon
being re°ected at the ¯rst beam splitter is 1=

p
2. The probability amplitude

of transmitting at the second beam splitter is also 1=
p

2. Thus the probability
amplitude in going from A to B has an absolute value that is the product of the
two probability amplitudes, or jÁ1j = 1=2. The probability of going from A to
B when arm 2 is blocked is then P1 = jÁ1j2 = 1=4. The probability amplitude
Á1 also has a phase ±1 due to path 1.

Exercise 2 What is the probability for a photon to go from A to C when arm
2 is blocked? (Ans: 1/4)

If both arms are unblocked then we have two probability amplitudes. If
the paths are indistinguishable, then according to Feynman's second rule we
represent the resulting superposition mathematically by summing the two am-
plitudes:

Á = Á1 + Á2 (19.4)
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We note that this is not a simple sum because Á1 and Á2 are not simple
numbers. The probability of the event (i.e., a photon going from A to B) is
given by

P = jÁj2 = jÁ1j2 + jÁ2j2 + 2jÁ1jjÁ2j cos ± (19.5)

We can understand Eq. 19.5 by viewing the probability amplitudes as \clock
vectors," where the length of the clock arm is the absolute value of the prob-
ability amplitude, jÁj, and the orientation of the clock vector ± represents the
phase. In the case of the two paths the amplitudes are jÁ1j and jÁ2j, and the
phases are ±1 = 2¼=¸ and ±2±2 = 2¼= .̧

The sum of the two amplitudes Á is done mathematically as shown in
Fig. 19.1. We form a triangle by connecting the two vectors consecutively one
after the other. The ¯nal probability amplitude is obtained by joining the be-
ginning and the end of the two vectors arranged consecutively, as shown in
Fig. 19.1.

Figure 19.2: Method to add the probability amplitudes.

The absolute value of Á is obtained using the law of cosines, which if you
look carefully, that is indeed what Eq. 19.5 is. In the case of our Mach-Zehnder
interferometer we have that jÁ1j = jÁ2j = 1=2. Replacing this relation into
Eq. 19.5 and simplifying, we get

P =
1
2
(1 + cos ±) (19.6)

Notice that when ± is a multiple of 2¼ the probability of a photon going from
A to B is 1. That means that every photon that enters the interferometer ends
up in B. Conversely, if ± is an odd multiple of ¼ then P = 0. No photon reaches
B. Where do the photons go?

Exercise 3 If the probability of going from A to B is given by Eq. 19.6, what
is the probability for a photon to go from A to C? Hint: conservation of energy.
(Ans: (1=2)(1 ¡ cos ±))

We can do an experiment with photons by sending a very weak beam of
light into the interferometer. At B we put a detector that detects one photon
at a time. After it absorbs a photon the detector sends an electronic pulse to a
counter. If we sent N photons in one second, then the detector will record NP
photons in one second, where P is the probability given by Eq. 19.6. The Graph
of Fig. 19.1 shows an experimental recording of the number of counts detected
by a photon detector in 2 s as a function of a variable that is proportional to
the phase ± .
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Figure 19.3: Photon counts recorded by a detector at B.

The variable is the voltage applied to a piezo-electric element that displaces
one of the mirrors of the interferometer. This displacement in turn changes the
length of one of the arms, and as a consequence, ± .

Exercise 4 Assuming that the detector records every photon incident on it (in
practice this is not the case), what is the number of photons incident to the
interferometer in 2 s? (Ans: 80)

Exercise 5 Following Fig. 19.1, what graph would you expect to get if the
paths were distinguishable? (Ans: N 40)

In summary, when quantum mechanics states that the photon is in a su-
perposition of taking the two paths, it is meant that the photon takes both
paths. Another way to put it is that the photon interferes with itself. More
strikingly, quantum mechanics says that when the intensity is increased so that
many photons, billions of billions, pass through the interferometer at the same
time, interference is produced by each photon interfering with itself!

If we decide to determine which path the photon takes by means of mea-
surement, then the photon paths are not indistinguishable and the photon is
no longer in a superposition of the two paths. When we do a measurement of
the path we ¯nd that the photon takes either one path or the other. When the
paths are distinguishable the interference disappears.

The most straight forward way to make the paths distinguishable is by
putting a detector in one of the arms of the interferometer, say arm 2. When
we do this then there is no interference because obviously the light is not going
through arm 2. But there is an interesting experiment that we can perform that
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distinguishes the paths without blocking the light. In the next sections we will
discuss a property of photons, polarization, that can be used to distinguish the
paths.

19.1.1 Does the photon split?

It is possible to do an experiment that tests whether the photon splits when
going through the two arms of the interferometer. 2 Consider the setup of
Fig. 19.4. We have a source that emits pairs of photons simultaneously. The

Figure 19.4: Diagram of a tagged photon experiment on interference with a
Mach-Zehnder interferometer.

process is a well known optical e®ect called \parametric down-conversion." In
this process one photon incident on a crystal is converted into two photons with
energies that add up to the energy of the parent photon. The source is very
weak (i.e., produces about 106 photons per second), but that is what we want,
since we wish to detect the interference of one photon with itself. The data
obtained in Fig. 19.1 was obtained this way.

In this method we send one photon, called the \idler," to a detector, and the
other photon, called the \signal," to an interferometer and then to a detector.
The interesting thing about this source is that by only detecting the electronic
signals of photons that arrive simultaneously at the detectors, we discriminate
against other photons that we do not know about. We only detect photons that
have a partner. Thus, we \know" that we are detecting what happens to a lone
signal photon going through the interferometer. It serves to underscore that the
photon interferes with itself.

But the endeavors of the photon get even more mysterious. If we accept that
the photon goes through \both arms" then that means that somehow it splits.
Does it? Well, our setup in Fig. 19.4 was made with the following rationale: if
the photons split at one beam splitter, then they split at other ones. Therefore,
we put a beam splitter after the interferometer and put a detector after it.
Under these circumstances now we have two detectors after the interferometer,
which we call \signal-B1" and \signal-B2."

2E.J. Galvez, C.H. Holbrow, M.J. Pysher, J.W. Martin, N. Courtemanche, L. Heilig, and
J. Spencer, "Interference with Correlated Photons: Five Quantum Mechanics Experiments
for Undergraduates, American Journal of Physics (in press)
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Now comes the photon-splitting test. We arrange our electronic signals so
that we detect the double coincidences between the idler detector and signal-
B1 (squares in Fig. 19.1.1), and idler and signal-B2 (triangles in Fig. 19.1.1), and
triple coincidences between the idler, signal-B1 and signal-B2 (crosses Fig. 19.1.1).
If the photon splits at the beam-splitter then we should see triple coincidences.
We do not see any. The data is consistent with the photon to interfere with itself
and then go to either detector B1 of detector B2. The photon goes through the
two arms of the interferometer without splitting. Oxymoronic, but that is what
we see.

Figure 19.5: Data on the setup of photon interference with two detectors after
the interferometer (Fig. 19.4). Squares and triangles are the double coincidences
between the idler detector and detectors B1 and B2. The crosses are the triple
coincidences of all three detectors.

19.1.2 Spookiness of superposition
Before we discuss polarization let's consider one of the striking consequences of
superposition in quantum mechanics, in the \bomb" experiment. Consider a
Mach-Zehnder interferometer set such that the paths are indistinguishable and
such that ± = ¼. Thus the detector at B will detect no photons because P = 0
(see Eq. 19.6. If the paths were distinguishable then the probability of detecting
a photon at B would be P = 1=2. If the paths were distinguishable by means
of blocking one of the arms then the probability of detecting a photon at B is
P = 1=4. In the latter case, 1/2 of the photons will be blocked, 1/4 of the
photons will go to port B and 1/4 to port C.

Notice something peculiar about quantum mechanics: probability. There is
a probability that the photon will take this path or that path. If we send one



19.1. INTERFERENCE OF QUANTA 7

photon, we do not really know where it will go. We only know where it is likely
to go. It is an important distinction between classical and quantum mechanics.
Classical mechanics is deterministic, quantum mechanics is probabilistic. But
for all its disturbing aspects, quantum mechanics has survived the test of time
to become the most successful physical theory ever invented!

Back to the bomb. Suppose that we have an interferometer set for destructive
interference (i.e., ± = ¼). Now suppose also that we have a bomb that gets
triggered when a single photon hits it. While the paths of the interferometer
are indistinguishable no photon reaches B. We now place our trigger-happy
bomb in arm 2, as shown in Fig. 19.6. The paths are now distinguishable. We
then send one photon. Because of the bomb there is 25% probability that the
photon will reach B. The fact that a photon reaches B means that the photon
that reaches it \knows" that there is bomb in arm 2 without going through
it! It detects the bomb without touching it! Of course, this is not an e±cient
experiment: there is also 50% chance that it will go kaboom. However, the point
is that quantum mechanics has some predictions that sometimes feel like they
are impossible, but when we do the experiment the results agree with quantum
mechanics.

Figure 19.6: Diagram of a Mach-Zehnder interferometer with a bomb in one of
its arms.

19.1.3 A to B vs. A to C

Earlier we saw that the probability of going from A to B in a Mach Zehnder
interferometer (Fig. 19.1) is given by Eq. 19.6:

PAB =
1
2

(1 + cos ±): (19.7)

But what about the probability for going from A to C? Is there any di®erence?
The answer is yes. A photon going from A to B through arm 1 gets re°ected
once and transmitted once through the beam splitters. In going through arm 2,
the photon gets transmitted once and then re°ected once. However, when we
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go from A to C there is a subtle di®erence between the two arms. Through arm
1 the photon gets re°ected twice, and through arm 2 it gets transmitted twice.

Even if the beam splitters have equal transmission and re°ection probabili-
ties there is a di®erence between the two cases. Let's put it in a di®erent way:
there has to be a di®erence. If the probability for going from A to C were also
given by Eq. 19.7 then when ± = 0 the probability in going from A to B would
be 1, and the probability in going from A to C would also be 1. That is a
contradiction! The photon that goes into the interferometer goes to either B
or C . The probabilities must be complementary. Therefore, the probability for
going from A to either B or C must be 1 always, regardless of how the photon
gets there:

P = PAB + PAC = 1: (19.8)

Combining equations 19.7 and 19.8 we get

PAC =
1
2
(1 ¡ cos ±): (19.9)

You can also understand this equation in terms of conservation of energy. If
there are N input photons then NPAB go to B and NPAC go to C. The
photons are going to go here or there, but the total number must remain the
same.

Finally, you might ask, why then is the probability for going to B associated
with the plus sign and the probability to go to C associated with the minus
sign? The di®erence is a very subtle issue, and depends on the optics (i.e., the
beam splitters). It has to do with an added ¼=2 phase between the waves that
get re°ected and transmitted.

Suppose for simplicity that a re°ection involves imparting a phase of ¼=2 onto
the re°ected wave. Then the transmitted wave gets no phase upon transmission.
In the case when the photon goes from A to B the phase that gets added by
re°ection gets added equally to both paths so that it cancels out when we take
the di®erence of the two phases. However, in going from A to C the re°ection
phases add for one path but are not there for the other path. As a consequence
the phase di®erence between the two paths in Eq. 19.5 for A to C is ± +¼, which
gives rise to the minus sign in Eq. 19.9. The important point though is that the
probabilities from A to B or C satisfy Eq. 19.8. In a di®erent interferometer
the formula for the two cases could reverse.

19.2 Plane waves and polarization

19.2.1 Plane acoustic waves
Ocean waves, from wherever they originate, they expand, and by the time they
reach a nice sandy shore they form linear wavefronts. By linear wave fronts
we mean that the points that have the same phase form a line, and this line is
perpendicular to the direction of propagation of the wave.

Sound waves are not as con¯ned as water waves. Suppose that we are far
from a car when it blows its horn. The sound waves leave the car in all directions,
but the portion of the sound that reaches us is pretty close to a planar wave
front. That is, the regions where the air is compressed form planes, separated
by one wavelength, that travel in a direction perpendicular to the plane. This
is also known as a \plane wave."
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If a plane wave is traveling along the x-axis then its equation is:

y = A cos(
2¼x
¸

¡ 2¼t
T

); (19.10)

where A is the amplitude of the wave. In the case of the sound wave A is the
pressure at maximum compression of the air molecules. Equation 19.10 has
some hidden information: for a given point x at a time t all the points in the
plane perpendicular to x (i.e., Y Z) have the same phase.

19.2.2 Linearly or plane polarized light
Classically, polarization of light is understood to arise because light is an oscil-
lating electric ¯eld and the electric ¯eld has a direction that is perpendicular to
the direction in which the light wave is traveling.

A possible light wave could be one which travels along the z-direction with
an electric ¯eld vector oscillating parallel to the y-axis. Such a wave can be
represented mathematically by

E(z; t) = (0; E0; 0) sin(2¼
¸

z ¡ 2¼
T

t) (19.11)

where E0 is the maximum amplitude of the electric ¯eld, and E is the electric
¯eld strength at a point z and time t where the wave has a wavelength ¸ and a
period T . Notice that there is no dependence on x or y. Such a wave is also a
plane wave like the acoustic wave, only that the amplitude of the wave is given
by the electric ¯eld of the wave, which happens to be aligned in this case with
the y-axis.

Figure 19.7: A representation of an electromagnetic wave in space. The planes
are ¸=24 apart and extend to in¯nity. The electric ¯eld is indicated by the
arrows. In a given plane the electric ¯eld is the same at every point.

Figure 19.7 represents the electric ¯eld of the electromagnetic wave described
by Eq. 19.11 as it exists in three dimensions. The small arrows in the ¯gure show
the direction and magnitude of the electric ¯eld. The planes in the diagram are
¸=24 apart. In a given plane the electric ¯eld is the same at every point. Because
the direction of the oscillation is perpendicular to the direction of travel shown
by the large arrow, this wave like all electromagnetic waves is a transverse wave.
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Transverse waves always have the possibility of being polarized. When, as in
this example, the electric ¯eld always points parallel to the same direction such
a wave is said to be \polarized".

Such light is said to be \linearly polarized" because the electric ¯eld oscillates
in a straight line. Can you imagine a wave linearly polarized in the x-direction?
This kind of light is also said to be \plane polarized" because the oscillation
takes place in a plane.

Remember that electric ¯eld is a vector. The most important concept about
vectors is that they can be decomposed into two orthogonal vectors, as shown
in Fig. 19.8. The standard trigonometric relations alow us to ¯nd the values of
the components when we know the magnitude of the vector and the angle that
it forms with the orthogonal axes.

Figure 19.8: A vector V decomposed into components aligned with orthogonal
axes.

Exercise 6 Give the component vectors of V1 and V2 from Fig. 19.9.

Figure 19.9: Figure for exercise 6.

In our discussion we are going to restrict ourselves to waves that travel
in one dimension along an axis. The electric ¯eld will then be a vector with
some orientation but contained in a plane that is transverse to the propagation
direction. If we do experiments in a laboratory where the beams travel in a
horizontal plane, then the electric ¯eld of the wave is contained in a vertical
plane. The simplest orthogonal axes to describe the electric ¯eld are then the
horizontal axis and the vertical axis. This is shown in Fig. 19.10. Since the
electric ¯eld in the ¯gure is parallel to the plane of the paper, then we can
assume that the light is coming toward us, out of the paper and perpendicular
to the plane of the paper.
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Figure 19.10: Electric ¯eld of the light (polarization) in the horizontal-vertical
(HV) axes.

Another possibility for reference axes is a set of axes rotated by an angle µ
from the HV axes. We will call these the H 0V 0 axes. E could then refer the elec-
tric ¯eld of the light wave in terms of H 0V 0. Consider the example of Fig. 19.11.
The electric ¯eld has an amplitude E0. In the HV axes it is represented as
(0; E0). In the H 0V 0 reference frame it is represented as (E0 sinµ; E0 cos µ).

Figure 19.11: Electric ¯eld of the light and two axes in which it can be repre-
sented.

19.2.3 Polarizers
The light that comes from the Sun or from a lamp is unpolarized. That is, it
is made up of waves with polarizations of di®erent orientations. You can pro-
duce linearly polarized light by passing unpolarized light through special plastic
¯lms called polarizers. Commonly these contain long molecules of polyvinyl
alcohol stretched and oriented in the same direction. Iodine atoms are attached
to the molecules, and when light is incident on such a sheet, the component of
its oscillation parallel to the molecules causes the iodine atoms to move along
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the molecules, absorbing this component of the incident light. The other com-
ponent of oscillation is only weakly a®ected by the sheet and emerges largely
unabsorbed. As a result, light emerging from these so-called \polarizing sheets"
is linearly polarized perpendicular to the direction of the long molecules.

Polaroid sunglasses are made of this sort of polarizing sheet. Their lenses
are oriented to block oscillations parallel to the ground. This is because when
light re°ects from asphalt on the surface of a road or from water on a lake or
pond, the oscillations parallel to the horizon are more e±ciently re°ected than
the others. This is partly what causes glare and setting Polaroid lenses to block
this component of the re°ected light reduces glare.

A simple experiment is to take two polarizing sheets and put them at right
angles. The ¯rst absorbs all of one component of oscillating electric ¯eld. The
second absorbs the rest, and nothing is transmitted. The combination of two
sheets at right angles is essentially opaque.

When unpolarized light of intensity I0 is incident on a polarizer, half of the
intensity is transmitted. The other half is absorbed.

19.2.4 Light through polarizers: Wavespeak
Imagine a beam of linearly polarized photons entering a polarization analyzer.
As mentioned before, the polarizer absorbs light parallel to an internal axis,
called \extinction axis," and transmits light parallel to the orthogonal axis,
called the \transmission axis."

Consider the case when the light wave is coming out of the page with the
electric ¯eld oriented vertically. We also call this \vertically polarized." The
light wave is incident on a polarizer. Figure 19.12 shows a diagram representing
one case. The polarization of the light is represented by the broad, double-
headed arrow as it enters the polarizer. The polarization is represented by the
square, with the solid axis marked on the analyzer denoting the transmission
axis.

Figure 19.12: Light vertically polarized entering a polarizer with its transmission
axis oriented vertically.

Since the polarization of the light is aligned with the transmission axis of
the polarizer then all of the light gets transmitted. If the electric ¯eld is E0
then the transmitted electric ¯eld is ET = E0 and its intensity is IT = I0.

Consider now the case of Fig. 19.13. The incident electric ¯eld is perpen-
dicular to the transmission axis. The component of the electric ¯eld along that
axis is zero. All of the light is aligned along the extinction axis. Therefore, it is
all absorbed. The transmitted ¯eld and intensity are ET = 0 and IT = 0.
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Figure 19.13: Light vertically polarized entering a polarizer with its transmission
axis oriented horizontally.

Consider now an intermediate case, shown in Fig. 19.14. The transmission

Figure 19.14: Light vertically polarized entering a polarizer with its transmission
axis oriented an angle µ with the vertical.

axis is now forming an angle µ with the incident polarization. The incident
electric ¯eld can be decomposed into two components: one parallel to the trans-
mission axis (E0 cos µ), and another parallel to the extinction axis (E0 sinµ).
The former component gets transmitted and the latter gets absorbed. This is a
general case that is worthy to underscore:

1. The transmitted electric ¯eld is ET = E0 cos µ.

2. The transmitted intensity is IT = I0 cos2 µ. In optics this is known as
Malus' law.

3. The light emerges from the polarizer with a polarization oriented an
angle µ with respect to the incident polarization.

19.2.5 Light through polarizers: Quantumspeak
For the simple situations described above, the quantum predictions of how much
polarization will emerge from a polarization analyzer are the same as the classi-
cal predictions. It must be so because experiment shows the classical predictions
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are correct. However, this must also work at the photon level so we need to see
how this gets put into the quantum language.

When you want to know the probability of an outcome, you use quantum
mechanics to calculate the probability amplitude and then square it. In connec-
tion with interference we have seen that the photon does not split. Rather, the
photon goes through the interferometer in a superposition of going through the
two arms. We will use that approach here.

Photons are polarized. Suppose that the light is polarized forming an angle
µ with the horizontal, as shown in Fig. 19.8. When we talk about waves we
can decompose the linearly polarized wave into two waves polarized along the
horizontal and vertical axes. We should be able to do something similar at the
photon level, but how?

Let's go back to waves: if µ = 60±then the amplitude of the electric ¯eld
along the horizontal direction is E0 cos 60± = E0=2. In the same way, the
component along the vertical axis is E0 sin 60± =

p
3E0=2. If we put a polarizer

with transmission axis horizontal, the transmitted intensity will be I0=4 (i.e.,
the square of the ¯eld). If we rotate the polarizer to be vertical we will obtain
a transmitted intensity 3I0=4. If we think in terms of photons, then we should
detect 1/4 of the incident photons when the polarizer is horizontal and 3/4 when
the polarizer is vertical. Following the relation between intensity and probability
that we used in the interference section we can say that the probability of getting
a photon transmitted is 1/4 when the transmission axis of the polarizer is aligned
with the horizontal, and 3/4 when it is aligned with the vertical. This has all the
ingredients of superposition! We can then say that a photon with polarization
oriented at an angle can be represented as being in a superposition of being
polarized horizontal and vertical, with amplitudes given by the components of
the polarization along those axes (cos µ for horizontal and sinµ for vertical).

If we now send a photon to a polarizer with its orientation forming an angle
µ with the transmission axis, then quantum mechanically we can state that it
is in a superposition of two polarizations. One polarization is parallel to the
transmission axis and another perpendicular to the transmission axis. As a
result we can state:

1. The absolute value of the amplitude for the photon to be transmitted is
cos µ.

2. The probability that the photon is transmitted is cos2 µ.

3. The polarization of the transmitted photon has a new orientation: the
orientation of the transmission axis of the polarizer.

The last conclusion above is very striking. The transmission of the pho-
ton through the polarizer involves projecting it into a new state with a new
polarization.

19.2.6 A new quantum mystery
Just when you thought it was starting to clear up, here is a new mystery.
Consider a photon polarized vertically. If we put a polarizer with a transmission
axis oriented horizontally no photons go through. Let's now put before the
horizontal polarizer another one oriented an angle µ with respect to the vertical.
Are photons transmitted past the two polarizers?



19.3. THE QUANTUM ERASER 15

The answer is yes! Check this out: the ¯rst polarizer at an angle theta with
the incident polarization projects the polarization of the transmitted photon.
this new orientation forms an angle (¼=2 ¡ µ) with the horizontal polarizer that
follows, so some photons get transmitted. The amplitude of passing through the
¯rst polarizer is cos µ. The amplitude of passing through the second (horizontal)
polarizer is cos(¼=2 ¡ µ). This situation is shown in Fig. 19.15.

Figure 19.15: Light vertically polarized entering a polarizer with its transmission
axis oriented an angle µ (left). The transmitted beam then is incident on a
polarizer with its transmission axis oriented horizontally.

Exercise 7 A vertically polarized photon is incident on a pair of polarizers The
¯rst one has its transmission axis oriented an angle µ with the vertical. The
second one's transmission axis is oriented horizontally.

1. What is the probability that a photon be transmitted through the two
polarizers when µ = 30±? (Ans: 3/16)

2. What is the ¯nal polarization orientation of the photon? (Ans: horizontal)

19.3 The Quantum Eraser
Before we discuss an new puzzle, lets consider two photons that are linearly
polarized, have the same wavelength and travel in the same direction. If their
polarizations are parallel to each other, we cannot tell them apart: they are in-
distinguishable. However, if their polarizations are perpendicular to each other
then we can tell them apart. Suppose that one is polarized vertically and the
other horizontally. Putting a polarizer with its transmission axis vertical then
transmits the vertically polarized one but not the horizontally polarized one.
Conversely, polarizer oriented horizontally will transmit the horizontal one but
not the vertical one. Thus, photons in orthogonal polarizations can be dis-
tinguish by means of a polarizer. We can say that these two photons contain
distinguishing information encoded in their polarization.

Consider the interferometer shown in Fig. 19.16. We will consider an exper-
iment in three steps. The light entering the interferometer is polarized vertical
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Figure 19.16: Experimental layout for the experiment on the \quantum eraser."

(i.e., perpendicular to the page). In stage (i) the interferometer is aligned to
have indistinguishable paths for the photon to go from A to B . Thus we get
interference.

In stage (ii) we place two polarizers in arm 1. One polarizer with transmis-
sion axis forming 45±with the vertical and a second one with transmission axis
horizontal.

Exercise 8 What is the transmission amplitude to go from A to B through arm
1? (You will ¯rst have to calculate the probability amplitude of going through
the two polarizers.) (Ans: 1/4)

We now put a neutral density ¯lter that provides the same attenuation as the
two polarizers (i.e., with a transmission probability amplitude of 1/2). When
we do the experiment we ¯nd no interference. This is because the two arms are
now distinguishable by means of the polarization of the light.

Exercise 9 Find an expression for the probability for going from A to B (both
arms) in this case. (Ans: 1/8)

In stage (iii) we put a polarizer after the interferometer with its transmission
axis forming 45±with the vertical axis.

Exercise 10 For stage (iii) of the experiment

1. Find the absolute value of the probability amplitude for going from A to
B through arm 1. (Ans:

p
2=8)

2. What is the orientation of the polarization reaching B coming from arm
1? (Ans: +45±relative to the horizontal)

3. Find the absolute value of the probability amplitude for going from A to
B through arm 2. (Ans:

p
2=8)
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4. What is the orientation of the polarization reaching B coming from arm
2? (Ans: +45± relative to the horizontal)

If you answer the above questions, you will conclude that the polarizer
placed after the interferometer erases the distinguishing information. Inter-
ference should be regained! We will investigate this in the laboratory.

Exercise 11 Find an expression for the probability for going from A to B in
stage (iii) as a function of ±. (Ans: (1=16)(1 + cos ±)

19.4 Problems

Problem 1 When a laser pointer is projected on a screen we see a red spot (
¸ = 670 nm). The intensity of the light reaching the screen is 3 mW.

1. Find the number of laser photons reaching the screen per unit time.

2. If we think of these photons as a long stream of short bursts of light that
are evenly separated. How far apart are they?

Problem 2 A weak source of light of wavelength 512 nm illuminates a pair of
slits. The source sends an average of 1000 photons every second.

1. Find the intensity of this light source in mW.

2. If we think of these photons as a long stream of short bursts of light that
are evenly separated. How far apart are they? (Hint: How fast are they
going?)

Problem 3 Consider the Mach-Zehnder interferometer shown in Fig. 19.1.
Each beam-splitter re°ects half and transmits half of the intensity of the light
that is incident on it. The interferometer has two output ports B and C.

1. The intensity of the incident light is I0. If we block one of the arms, what
is the intensity of the light exiting the interferometer ports (in terms of
I0)?

2. Both arms are now unblocked. The intensity of the light exiting through
port B is IB = (I0=2)[1 + cos ±], where ± is the phase di®erence between
the beams from the two arms due to the di®erence in length of the two
arms. Find an expression for the intensity exiting through port C in terms
of I0 and . Hint: energy must be conserved.

3. The wavelength of the light is 900 nm. Find when the di®erence in length
of the two arms (i.e., l1 ¡ l2) is 2 m.

4. Consider a photon going from A into the interferometer. The lengths of
the two arms are now the same (i.e., l1 = l2).

(a) If the paths are indistinguishable, what is the probability that the
photon will be detected at B?
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(b) If the paths are indistinguishable, what is the probability that the
photon will be detected at C?

(c) If the paths are distinguishable, what is the probability that the
photon will be detected at B?

(d) If the paths are distinguishable, what is the probability that the
photon will be detected at C?

Problem 4 Consider the Mach-Zehnder interferometer shown in Fig. 19.1. It
has 50-50 beam splitters, which re°ect 50% of the intensity of the light incident
on them, and transmit the other 50%.

1. Find the probability of transmission through a 50-50 beam splitter.

2. Find the he absolute value of the probability amplitude of going through
the beam splitter.

3. The probability amplitude of going through the two beam splitters is the
product of the probability amplitudes. What is the absolute value of the
probability amplitude for going from A to B when arm 1 is blocked?

4. What is the probability of a photon to go from A to C when arm 2 is
blocked?

5. If the two paths of the interferometer are distinguishable,

(a) What is the probability of going from A to B when neither arm is
blocked?

(b) What is the probability of going from A to C when neither arm is
blocked?

6. If the paths through the interferometer are indistinguishable,

(a) What is the probability for a photon to go from A to B when ± = 3¼
?

(b) If 500 photons per second are incident to the interferometer from A.
How many photons reach B in one second when ± = 3¼=2?

(c) If 500 photons per second are incident to the interferometer from A.
How many photons reach B when ± = 3¼ ?

(d) Based on the previous quesiton, how many photons reach C in one
second when ± = 3¼ ?

(e) If 500 photons per second are incident to the interferometer from A.
What is the value of ± if 250 photons reach B in one second?

Problem 5 Consider the interferometer in Fig. 19.17, It has a neutral density
¯lter with a transmission amplitude of 1/2 in arm 1.

1. What is the absolute value of the probability amplitude of going from A
to B via arm 1.

2. What is the probability of going from A to B when ± = 4¼ ?
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Figure 19.17: Diagram of a Mach-Zehnder interferometer with a neutral density
¯lter in arm 1.

Problem 6 A vertically polarized photon encounters a polarizer forming an
angle µ with the vertical axis, followed by a horizontal polarizer. Show that
when µ = ¼=4 the probability of transmission through the two polarizers is a
maximum. What is that probability?

Problem 7 Use a polarizer to polarize the light from a light bulb. What frac-
tion of the intensity will pass through a second polarizer placed at 30 to the
direction of polarization?

Problem 8 A vertically polarized photon is incident onto a polarizer with a
transmission axis oriented an angle of 80 degrees counter-clockwise from the
horizontal.

1. What is the probability amplitude of the photon to go through the polar-
izer.

2. We now put a second polarizer that has a transmission axis oriented 10
degrees clockwise from the transmission axis of the previous polarizer.

(a) What is the probability that an incident photon is transmitted through
the two polarizers?

(b) If we add a third polarizer. Find the orientation of its transmission
axis so that no photon is transmitted.

Problem 9 In doing a new quantum eraser experiment we rotate the polariza-
tion of the light going through one of the arms of the Mach-Zehnder interfer-
ometer using three polarizers. The photons that go into the interferometer are
vertically polarized. See Fig 19.18
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Figure 19.18: Diagram of a Mach-Zehnder interferometer with polarizers for
Problem .

1. In the polarization-rotating arm the transmission axis (TA) of the ¯rst
polarizer is oriented 30 degrees with the vertical, the TA of the second
polarizer is oriented 60 degrees relative to the vertical, and the TA of the
third polarizer is oriented horizontally. What is the probability that the
photon will go through all three polarizers?

2. In the other arm of the interferometer we want to keep the orientation of
the polarization vertical but we want to provide a probability amplitude
for transmission through the two polarizers that is the same as the one in
the other arm. Explain how we can do this with two polarizers, indicating
the angle that each polarizer makes with the vertical. Make a diagram.

Problem 10 A Mach Zehnder interferometer has beam-splitters that have an
uneven ratio of re°ection to transmission. The re°ection probability is 1/3
and the transmission probability is 2/3. The 900-nm incident light is vertically
polarized (see Fig. 19.18).

1. Find the probability amplitude for a photon to go from A to B via arm 1.

2. We now put a \half wave plate" (HWP) in arm 1 so that it rotates the
polarization by 90 degrees. Arm 2 has compensating plate that does not
rotate the polarization. Both components transmit all of the light that
reaches them. Find the probability that the photon reaches B (both arms).

3. We now put a polarizer after the interferometer oriented at 45 degrees
with the horizontal. Find the probability for the photon going from A to
B when the lengths of the two arms are the same.

4. If we now increase the length of one of the arms by 1350 nm. What is the
probability of going from A to B?



19.4. PROBLEMS 21

Figure 19.19: Diagram of a Mach-Zehnder interferometer for Problem .


