%% Data aquisition program with Altera DE2 bboard % The current problem is that this board is obsolete in 2021 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % This program was originally written by Behzad Khajavi for the Altera DE2 % board on July 2017. This work was done at Colgate University. % % % % This program used the output of 3 detectors and takes data points step % by step, where in between steps the user can make changes to the % apparatus. For example, it can be used for th Hanbuty-Brown-Twiss test. % The output is put in an Excel file. % % % %*************************************************************************% %_________________________________________________________________________% % To read Altera board: % % Each 32-bit number is divided into 7-bit partitions which makes it 5 % % bytes of 7-bit figures per number. Transmitting through the serial port % % each number becomes 5 8-bit bytes + a termination byte. Eventually % % reading the data with MatLab using 19200 baudrate we receive % % 8 (# of countes)*5(bytes per number)+1= 41 numbers in the array. % % In order to calculate the actual number for a counter, say A, we mu % % multiply the corresponding figures by 2^0, 2^7, 2^14, 2^21 and 2^28. % % We save the numbers and plot them. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Revision to add long and short times. by Kiko Galvez 4/22 % Modified to clear input buffers 5/29/22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clc; clear; close all; format compact % defining object s for serial instrument. BaudRate=19200 bps, DataBits=8 % StopBits=1, Parity=none. % The COM port is determined by the Device Manager in Windows. %% Loop % numofstates = 3; % # of states to do the tomography for % numofmeasurements = 5; % # of measurements per each state % timeinterval = 2; % time interval for each measurement in seconds % Input dialog prompt = {'Enter # of states:','Enter # of measurements per state:','time interval','Counter COM port #: ','Excel file name'}; dlg_title = 'Quantum lab Inputs'; defaultans = {'3','1','1','COM7','Paused3'};%[1 length(dlg_title)+10],[1 5;1 5;1 5;1 30] userinput = inputdlg(prompt,dlg_title,[1 length(dlg_title)+30],defaultans); numofstates = str2double(userinput{1}); % # of states to do the tomography for numofmeasurements = str2double(userinput{2}); % # of measurements per each state scounter = serial(userinput{4},'BaudRate',19200,'DataBits',8,'StopBits',1,'Parity','none'); timeinterval = str2double(userinput{3}); % time interval for each measurement in seconds % end of input dialo timeaxislimit = numofstates*numofmeasurements; loop = numofmeasurements; deltat=40e-9; % pulse width to calculate accidental coincidences count=1; pausetime=0; time=zeros(loop);statepause=2; clockt=fix(clock); % saving the initial date/time into a matrix % myDatadimension=41*(timeinterval*10)+40; % timeinterval*10=timeinterval in seconds % cleandatadimension=41*(timeinterval*10); % myData=zeros(myDatadimension,1); resultsmatrix=zeros(numofmeasurements,8); % Excel file definitions Sheet1=strcat('Data points',num2str(clockt(1,4:6))); Sheet2=strcat('Sum of all Points',num2str(clockt(1,4:6))); xlrange1='A1'; warning('off','MATLAB:xlswrite:AddSheet'); % to suppress the warning when the sheet name is not in excel file. Header1={'A','B','C','AB','AC,','ABC','Acc-AB','Acc-AC','Acc-ABC'}; xlsfilename = userinput{5}; xlswrite(xlsfilename,Header1,Sheet1,xlrange1) % End of writing the header for the "Gradual Results" sheet in excel file. % Start the excel file to write the "Total Results" sheet warning('off','MATLAB:xlswrite:AddSheet'); % to suppress the warning when the sheet name is not in excel file. %Header2={'A','B','C','AB','AC','ABC','Acc-AB','Acc-AC','Acc-ABC'}; Header2={'A','B','C','AB','AC,','ABC','Acc-AB','Acc-AC','Acc-ABC'}; xl2range1='A1'; xlswrite(xlsfilename,Header2,Sheet2,xl2range1) % End of writing the header for the "Gradual Results" sheet in excel file. %% Figure adjustments screensize = get( groot, 'Screensize' ); %getting screen size position=[1 screensize(1,4)/2-100 screensize(1,3) screensize(1,4)/2]; f1=figure('Name','CoincidenceABC','numbertitle','off','Position',screensize,'color',[0.7 0.7 0.7]); %_____________________________________ % Accidental windows axAB=axes('position',[0.13 0.03 0.1 0.05],'visible','off'); axAB.Title.Visible = 'on'; set(get(gca,'title'),'color','w','background','b')% figure header text:white, background:blue axAC=axes('position',[0.45 0.03 0.1 0.05],'visible','off'); axAC.Title.Visible = 'on'; set(get(gca,'title'),'color','w','background','b')% figure header text:white, background:blue axABC=axes('position',[0.77 0.03 0.1 0.05],'visible','off'); axABC.Title.Visible = 'on'; set(get(gca,'title'),'color','w','background','b')% figure header text:white, background:blue %_____________________________________ % Axes Properties % axes('position',[left bottom width height]) % Axis for Header axheader=axes('position',[0.45 0.88 0.1 0.05],'visible','off'); axheader.Title.Visible = 'on'; set(get(gca,'title'),'color','w','background','b')% figure header text:white, background:blue %_____________________________________ % Axes for plots % singles A axes ax1 = axes('position',[0.08 0.57 0.25 0.3]); % Axies 1 position in the figure set(get(ax1,'title'),'color','w','background','b') ax1.XLim = [0 timeaxislimit]; ax1.YLim = [0 inf]; % ax1.XLabel.String = 'time (sec)';ax1.XLabel.FontWeight = 'bold'; ax1.XLabel.FontSize = 14;ax1.XLabel.FontName = 'TimesNewRoman'; % set(ax1,'XTick',1:timeinterval:timeaxislimit*timeinterval) set(ax1,'XTick',0:timeaxislimit/10:timeaxislimit) ax1.YLabel.String = 'singles A';ax1.YLabel.FontWeight = 'bold'; ax1.YLabel.FontSize = 25;ax1.YLabel.FontName = 'TimesNewRoman'; grid(ax1,'on'); hold(ax1,'on') %____________________________________ % singles B axes ax2 = axes('position',[0.40 0.57 0.25 0.3]); % Axies 2 position in the figure set(get(ax2,'title'),'color','w','background','b') ax2.XLim=[0 timeaxislimit]; ax2.YLim = [0 inf]; % ax2.XLabel.String = 'time (sec)';ax2.XLabel.FontWeight = 'bold'; ax2.XLabel.FontSize = 14;ax2.XLabel.FontName = 'TimesNewRoman'; % set(ax2,'XTick',1:timeinterval:timeaxislimit*timeinterval) set(ax2,'XTick',0:timeaxislimit/10:timeaxislimit) ax2.YLabel.String = 'singles B';ax2.YLabel.FontWeight = 'bold'; ax2.YLabel.FontSize = 25;ax2.YLabel.FontName = 'TimesNewRoman'; grid(ax2,'on') hold(ax2,'on') %____________________________________ % singles C axes ax4=axes('position',[0.72 0.57 0.25 0.3]); % Axies 3 position in the figure set(get(ax4,'title'),'color','w','background','b') ax4.XLim=[0 timeaxislimit]; ax4.YLim = [0 inf]; % ax4.XLabel.String = 'time (sec)';ax4.XLabel.FontWeight = 'bold'; ax4.XLabel.FontSize = 14;ax4.XLabel.FontName = 'TimesNewRoman'; % set(ax4,'XTick',1:timeinterval:timeaxislimit*timeinterval) set(ax4,'XTick',0:timeaxislimit/10:timeaxislimit) ax4.YLabel.String = 'singles C';ax4.YLabel.FontWeight = 'bold'; ax4.YLabel.FontSize = 25;ax4.YLabel.FontName = 'TimesNewRoman'; grid(ax4,'on') hold(ax4,'on') %____________________________________ % Coinc.AB axes ax3=axes('position',[0.08 0.18 0.25 0.3]); % Axies 3 position in the figure set(get(ax3,'title'),'color','w','background','b') ax3.XLim=[0 timeaxislimit]; ax3.YLim = [0 inf]; ax3.XLabel.String = 'Measurement';ax3.XLabel.FontWeight = 'bold'; ax3.XLabel.FontSize = 14;ax3.XLabel.FontName = 'TimesNewRoman'; % set(ax3,'XTick',1:timeinterval:timeaxislimit*timeinterval) set(ax3,'XTick',0:timeaxislimit/10:timeaxislimit) ax3.YLabel.String = 'Coinc. AB';ax3.YLabel.FontWeight = 'bold'; ax3.YLabel.FontSize = 25;ax3.YLabel.FontName = 'TimesNewRoman'; grid(ax3,'on') hold(ax3,'on') %_____________________________ % Coinc.AC axes ax5=axes('position',[0.4 0.18 0.25 0.3]); % Axies 3 position in the figure set(get(ax5,'title'),'color','w','background','b') ax5.XLim=[0 timeaxislimit]; ax5.YLim = [0 inf]; ax5.XLabel.String = 'Measurement';ax5.XLabel.FontWeight = 'bold'; ax5.XLabel.FontSize = 14;ax5.XLabel.FontName = 'TimesNewRoman'; % set(ax5,'XTick',1:timeinterval:timeaxislimit*timeinterval) set(ax5,'XTick',0:timeaxislimit/10:timeaxislimit) ax5.YLabel.String = 'Coinc. AC';ax5.YLabel.FontWeight = 'bold'; ax5.YLabel.FontSize = 25;ax5.YLabel.FontName = 'TimesNewRoman'; grid(ax5,'on') hold(ax5,'on') %____________________________________ % Coinc.ABC axes ax6=axes('position',[0.72 0.18 0.25 0.3]); % Axies 3 position in the figure set(get(ax6,'title'),'color','w','background','b') ax6.XLim=[0 timeaxislimit]; ax6.YLim = [0 inf]; ax6.XLabel.String = 'Measurement';ax6.XLabel.FontWeight = 'bold'; ax6.XLabel.FontSize = 14;ax6.XLabel.FontName = 'TimesNewRoman'; % set(ax6,'XTick',1:timeinterval:timeaxislimit*timeinterval) set(ax6,'XTick',0:timeaxislimit/10:timeaxislimit) ax6.YLabel.String = 'Coinc. ABC';ax6.YLabel.FontWeight = 'bold'; ax6.YLabel.FontSize = 25;ax6.YLabel.FontName = 'TimesNewRoman'; grid(ax6,'on') hold(ax6,'on') %______________________________________________________________ for stateindexi=1:numofstates % header for each state measurement results in excel file "Gradual Results" countt=num2str((stateindexi-1)*(numofmeasurements+1)+2);% to go two lines further (count+1)in excel (because of the header) xlrange2=strcat('A',countt); stateindexit=num2str(stateindexi); stateheader={'state #',stateindexit}; xlswrite(xlsfilename,stateheader,Sheet1,xlrange2); % header for each state measurement results in excel file "Total Results" countt=num2str((stateindexi-1)*2+2); xl2range2=strcat('A',countt); xlswrite(xlsfilename,stateheader,Sheet2,xl2range2); % %______________________________________________________________ %% The Loop fopen(scounter); % open the serial port before the inner loop begins. %**************************************************************************** while ~isequal(count,loop+1) numofcounts=zeros(1,8); % Serial data accessing % for i=1:timeinterval % myData1 = fread(scounter,512,'uint8'); % reading # of bytes % myData(1,(i-1)*512+1:i*512) = myData1'; % end % % finding terminationbyte if the 41th element of myData is not 255 % tbi=0; % if myData(1,41)~=255 % for i=1:40 % if myData(1,i)==255 % terminationbyteindex=i; % end % end % tbi=terminationbyteindex; % end % % saving myData portion into cleandata so the array starts with A % % that is right after the first termination byte (255) % % cleandata=myData(1,tbi+1:tbi+cleandatadimension); % numofcounts=zeros(1,8); % CD=cleandata; % just to use a shorthand notation CD % kmax=timeinterval*10; % loop repetation numner for each counter % L=0;j=0; % for i=1:8 % j=0; % for k=1:kmax % numofcounts(1,i)=numofcounts(1,i)+CD(1,1+j+L)+2^7*CD(1,2+j+L)+2^14*CD(1,3+j+L)+2^21*CD(1,4+j+L)+2^28*CD(1,5+j+L); % j=j+41; % the corresponding figure after a tenth of a second % end % L=L+5; % next counter partition starts at the next 5th byte % end if timeinterval > 10 myData0 = fread(scounter,512,'uint8'); % reading # of bytes pause(1); flushinput(scounter); myData0 = fread(scounter,512,'uint8'); % reading # of bytes flushinput(scounter); times10loop=floor(timeinterval/10); for il=1:times10loop if il == times10loop time10=10+rem(timeinterval,10); else time10=10; end myDatadimension=41*(time10*10)+40; % timeinterval*10=timeinterval in seconds cleandatadimension=41*(time10*10); myData=zeros(1,myDatadimension); for i=1:time10 myData1 = fread(scounter,512,'uint8'); % reading # of bytes myData(1,(i-1)*512+1:i*512) = myData1'; end % finding terminationbyte if the 41th element of myData is not 255 tbi=0; if myData(1,41)~=255 for i=1:40 if myData(1,i)==255 terminationbyteindex=i; end end tbi=terminationbyteindex; end % saving myData portion into cleandata so the array starts with A % that is right after the first termination byte (255) cleandata=myData(1,tbi+1:tbi+cleandatadimension); % numofcounts=zeros(1,8); CD=cleandata; % just to use a shorthand notation CD kmax=time10*10; % loop repetition number for each counter L=0;j=0; for i=1:8 j=0; for k=1:kmax numofcounts(1,i)=numofcounts(1,i)+CD(1,1+j+L)+2^7*CD(1,2+j+L)+2^14*CD(1,3+j+L)+2^21*CD(1,4+j+L)+2^28*CD(1,5+j+L); j=j+41; % the corresponding figure after a tenth of a second end L=L+5; % next counter partition starts at the next 5th byte end end elseif timeinterval<1 %%%%%%%%%%%%%%%% Short times myDatadimension=41*10+40; % timeinterval*10=timeinterval in seconds cleandatadimension=41*10; myData0 = fread(scounter,512,'uint8'); % reading # of bytes % pause(1); flushinput(scounter); myData0 = fread(scounter,512,'uint8'); % reading # of bytes flushinput(scounter); myData=zeros(1,myDatadimension); % for i=1:timeinterval myData1 = fread(scounter,512,'uint8'); % reading # of bytes myData(1,1:512) = myData1'; % myData(1,(i-1)*512+1:i*512) = myData1'; % end % finding terminationbyte if the 41th element of myData is not 255 tbi=0; if myData(1,41)~=255 for i=1:40 if myData(1,i)==255 terminationbyteindex=i; end end tbi=terminationbyteindex; end % saving myData portion into cleandata so the array starts with A % that is right after the first termination byte (255) cleandata=myData(1,tbi+1:tbi+cleandatadimension); % numofcounts=zeros(1,8); CD=cleandata; % just to use a shorthand notation CD kmax=timeinterval*10; % loop repetation numner for each counter L=0;j=0; numofcounts=zeros(1,8); for i=1:8 j=0; for k=1:kmax numofcounts(1,i)=numofcounts(1,i)+CD(1,1+j+L)+2^7*CD(1,2+j+L)+2^14*CD(1,3+j+L)+2^21*CD(1,4+j+L)+2^28*CD(1,5+j+L); j=j+41; % the corresponding figure after a tenth of a second end L=L+5; % next counter partition starts at the next 5th byte end else %%%%%%%%%%%%%%%%%% Regular times myDatadimension=41*(timeinterval*10)+40; % timeinterval*10=timeinterval in seconds cleandatadimension=41*(timeinterval*10); myData0 = fread(scounter,512,'uint8'); % reading # of bytes pause(1); flushinput(scounter); myData0 = fread(scounter,512,'uint8'); % reading # of bytes flushinput(scounter); % myData=zeros(myDatadimension,1); myData=zeros(1,myDatadimension); for i=1:timeinterval myData1 = fread(scounter,512,'uint8'); % reading # of bytes myData(1,(i-1)*512+1:i*512) = myData1'; end % finding terminationbyte if the 41th element of myData is not 255 tbi=0; if myData(1,41)~=255 for i=1:40 if myData(1,i)==255 terminationbyteindex=i; end end tbi=terminationbyteindex; end % saving myData portion into cleandata so the array starts with A % that is right after the first termination byte (255) cleandata=myData(1,tbi+1:tbi+cleandatadimension); CD=cleandata; % just to use a shorthand notation CD kmax=timeinterval*10; % loop repetation numner for each counter L=0;j=0; for i=1:8 j=0; for k=1:kmax numofcounts(1,i)=numofcounts(1,i)+CD(1,1+j+L)+2^7*CD(1,2+j+L)+2^14*CD(1,3+j+L)+2^21*CD(1,4+j+L)+2^28*CD(1,5+j+L); j=j+41; % the corresponding figure after a tenth of a second end L=L+5; % next counter partition starts at the next 5th byte end end %%%%%%%%%%%%%%%%%%%%% end of taking data numofcountsA=numofcounts(1,1); numofcountsA=numofcounts(1,1); numofcountsB=numofcounts(1,2); % numofcountsAprime=numofcounts(1,3); numofcountsC = numofcounts(1,3);% C detector numofcountsBprime=numofcounts(1,4); numofcountsAB=numofcounts(1,5); % numofcountsAprimeB=numofcounts(1,6); % numofcountsABprime=numofcounts(1,7); numofcountsAC = numofcounts(1,6);% AC Coincidence numofcountsABC = numofcounts(1,7);% ABC Coincidence % numofcountsAprimeBprime=numofcounts(1,8); %% Plotting the data points on different subplots time(count) = (stateindexi-1)*numofmeasurements+count; % x-axis (time) in seconds % plotting A plot(ax1,time(count),numofcountsA,'. b','MarkerSize',20) %---------------------------------------------------------------------- % plotting B plot(ax2,time(count),numofcountsB,'. b','MarkerSize',20) %---------------------------------------------------------------------- % plotting C plot(ax4,time(count),numofcountsC,'. b','MarkerSize',20) %---------------------------------------------------------------------- % plotting AB plot(ax3,time(count),numofcountsAB,'. b','MarkerSize',20) %---------------------------------------------------------------------- % plotting AC plot(ax5,time(count),numofcountsAC,'. b','MarkerSize',20) %---------------------------------------------------------------------- % plotting ABC plot(ax6,time(count),numofcountsABC,'. b','MarkerSize',20) %---------------------------------------------------------------------- % Drawing Y-data of the three plots (A, B, AB) at the same time descriptionA = num2str(numofcountsA); title(ax1,descriptionA,'FontWeight','bold','FontSize',30,'FontName','Times New Roman'); descriptionB = num2str(numofcountsB); title(ax2,descriptionB,'FontWeight','bold','FontSize',30,'FontName','Times New Roman'); descriptionC = num2str(numofcountsC); title(ax4,descriptionC,'FontWeight','bold','FontSize',30,'FontName','Times New Roman'); descriptionAB = num2str(numofcountsAB); title(ax3,descriptionAB,'FontWeight','bold','FontSize',30,'FontName','Times New Roman'); descriptionAC = num2str(numofcountsAC); title(ax5,descriptionAC,'FontWeight','bold','FontSize',30,'FontName','Times New Roman'); descriptionABC = num2str(numofcountsABC); title(ax6,descriptionABC,'FontWeight','bold','FontSize',30,'FontName','Times New Roman'); descr = ['CoincidenceABC:','State # ',num2str(stateindexi),'/',num2str(numofstates),', measurement #',num2str(count),'/',num2str(numofmeasurements)]; title(axheader,descr,'FontWeight','bold','FontSize',30,'FontName','Times New Roman') % text(axheader,0,0,descr,'FontWeight','bold','FontSize',30,'FontName','Times New Roman') accidentalsAB=numofcountsA*numofcountsB*deltat/timeinterval; accidentalsAC=numofcountsA*numofcountsC*deltat/timeinterval; accidentalsABC=(numofcountsC*numofcountsAB+numofcountsB*numofcountsAC)*deltat/timeinterval; %From Pearson and Jackson AJP 2010 descraccAB = ['Acc AB=',num2str(accidentalsAB)]; title(axAB,descraccAB,'FontWeight','bold','FontSize',15,'FontName','TimesNew Roman') descraccAC = ['Acc AC=',num2str(accidentalsAC)]; title(axAC,descraccAC,'FontWeight','bold','FontSize',15,'FontName','TimesNew Roman') descraccABC = ['Acc ABC=',num2str(accidentalsABC)]; title(axABC,descraccABC,'FontWeight','bold','FontSize',15,'FontName','TimesNew Roman') drawnow %---------------------------------------------------------------------- %% Storing Data in the resultsmatrix and finally in xlsx file resultsmatrix(count,1)=numofcounts(1,1); resultsmatrix(count,2)=numofcounts(1,2); resultsmatrix(count,3)=numofcounts(1,3); resultsmatrix(count,4)=numofcounts(1,4); resultsmatrix(count,5)=numofcounts(1,5); resultsmatrix(count,6)=numofcounts(1,6); resultsmatrix(count,7)=numofcounts(1,7); resultsmatrix(count,8)=numofcounts(1,8); %________________________________________________________________________ % writing results gradually into the "Gradual Results' sheet in excel % file warning('off','MATLAB:xlswrite:AddSheet'); % to suppress the warning when the sheet name is not in excel file. countt=num2str((stateindexi-1)*(numofmeasurements+1)+count+2);% to go two lines further (count+1)in excel (because of the header) xlrange2=strcat('A',countt); accidentalsindividual=resultsmatrix(count,1)*resultsmatrix(count,2)*deltat/timeinterval; xlswrite(xlsfilename,[resultsmatrix(count,1:3),resultsmatrix(count,5:7),accidentalsAB,accidentalsAC,accidentalsABC],Sheet1,xlrange2); count = count +1; end fclose(scounter); % close the serial port after the inner loop ends. % pause(2) % if stateindexi~=numofstates % close all % end % Writing the average of the measurement results for the state into "Total % Results" sheet countt=num2str((stateindexi-1)*2+3); xl2range2=strcat('A',countt); accidentalstotalAB=sum(resultsmatrix(1:numofmeasurements,1))*sum(resultsmatrix(1:numofmeasurements,2))*deltat/(numofmeasurements*timeinterval); accidentalstotalAC=sum(resultsmatrix(1:numofmeasurements,1))*sum(resultsmatrix(1:numofmeasurements,3))*deltat/(numofmeasurements*timeinterval); accidentalstotalABC=(sum(resultsmatrix(1:numofmeasurements,2))*sum(resultsmatrix(1:numofmeasurements,5))+... sum(resultsmatrix(1:numofmeasurements,3))*sum(resultsmatrix(1:numofmeasurements,6)))*deltat/(numofmeasurements*timeinterval); xlswrite(xlsfilename,[sum(resultsmatrix(1:numofmeasurements,1)),sum(resultsmatrix(1:numofmeasurements,2)),sum(resultsmatrix(1:numofmeasurements,3)),... sum(resultsmatrix(1:numofmeasurements,5)),sum(resultsmatrix(1:numofmeasurements,6)),sum(resultsmatrix(1:numofmeasurements,7)),accidentalstotalAB,... accidentalstotalAC,accidentalstotalABC],Sheet2,xl2range2) % pause(statepause); count=1; % Prompt User to have a Pause between the states prompt = {'click OK to continue'}; dlg_title = 'PAUSE'; descripion = strcat('State # ',' ',num2str(stateindexi+1),'? '); defaultans = {[descripion,' You are doing a good job']}; if stateindexi==numofstates defaultans = {'Operation Completed. All done'}; end answer = inputdlg(prompt,dlg_title,[1 length(dlg_title)+30],defaultans); %______________________________________________ end clear s; %% writing date and time of the results into the excle files timeheader={'year','month','day','hour','minute','seconds'}; % "Gradual Results" sheet countt=num2str(numofstates*(numofmeasurements+1)+2); xlrange2=strcat('A',countt); xlswrite(xlsfilename,timeheader,Sheet1,xlrange2) countt=num2str(numofstates*(numofmeasurements+1)+3); xlrange2=strcat('A',countt); xlswrite(xlsfilename,clockt,Sheet1,xlrange2) % "Total Results" sheet xlrangetimeheader=strcat('A',num2str(numofstates*2+2)); xlrangetime=strcat('A',num2str(numofstates*2+3)); xlswrite(xlsfilename,timeheader,Sheet2,xlrangetimeheader) xlswrite(xlsfilename,clockt,Sheet2,xlrangetime) parameterheader={'Time Interval (s)'}; countt=num2str(numofstates*(numofmeasurements)+7); xlrange2=strcat('A',countt); xlswrite(xlsfilename,parameterheader,Sheet1,xlrange2) parameters=timeinterval; countt=num2str(numofstates*(numofmeasurements)+8); xlrange2=strcat('A',countt); xlswrite(xlsfilename,parameters,Sheet1,xlrange2) % save to "resultsmatrix.txt" file save('CoincidenceABC.txt','resultsmatrix','-ascii')