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Chapter 1

Postulates

Let us begin with a few axiomatic principles of quantum mechanics.

1. A measurement on a system (e.g., a particle) gives a result, a real
number in some units. Quantum mechanics makes predictions on any
type of measurement via the state of the system. The physical state
of the particle is represented by a state vector, denoted by the “ket”
|ψ〉, and which carries all the physical information about the state
that is allowed by quantum mechanics. The variable ψ is just a label
representing the state.

2. If c is a complex number, c|ψ〉 is the same state as |ψ〉. The “bra” form
of the state is the complex-conjugate of the state:

c∗〈ψ| = (c|ψ〉)∗ , (1.1)

where the asterisk stands for complex conjugate.

3. The physical quantity that is measured is the observable. Let us call
A the observable. It can represent any physical quantity. A photon
carries spin or helicity, so the photon spin is an observable.

4. The results of the measurement of the observable are the eigenvalues.
In the case of energy, for example, the eigenvalues are the possible
energies of the system. These eigenvalues can be denoted by ai, where
i = 1...N . N is a positive integer representing the dimensionality of
the space, which is given by the number of alternative outcomes of a
measurement. In the case of the helicity of the photon, there are two
observables ±h̄. In this case N = 2.
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2 CHAPTER 1. POSTULATES

5. The physical state corresponding to each eigenvalue is the eigenvector.
We denote the eigenvector associated to the eigenvalue ai by |ai〉, where
we have labeled the state by its eigenvalue. If there are two states with
the same eigenvalue, we would need to find an appropriate labeling
that distinguishes between the two states. The space of eigenvectors is
called the Hilbert space.

In the case of the photon helicity, we can label the eigenstates by |+〉
and |−〉. The eigenstates of helicity are the states of left and right cir-
cular polarization, so we can alternatively label the states respectively
by |L〉 and |R〉.

6. Eigenstates are mutually exclusive. Thus, they are orthonormal. We
represent this property via the scalar product. The scalar product of
two states |φ〉 and |ψ〉 is given by

〈φ|ψ〉 (1.2)

and which measure the amplitude or overlap of state |φ〉 onto |ψ〉. This
scalar product is similar to the inner product of vector algebra. In the
case of eigenstates, orthonormality requires

〈ai|aj〉 = δij, (1.3)

where δij is the Kroneker delta.

In the case of states of photon helicity, orthonormality requires:

〈R|R〉 = 1 (1.4)

〈L|L〉 = 1 (1.5)

or the amplitude of being oneself to be 1, and

〈R|L〉 = 0 (1.6)

〈L|R〉 = 0 (1.7)

or the property of one eigenstate to be in the other is 0.

Note also that

〈aj|ai〉 = (〈ai|aj〉)∗ . (1.8)
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7. The general state of the particle is in general a linear superposition of
eigenstates

|ψ〉 =
∑
i

ci|ai〉, (1.9)

where ci is a complex number representing the probability amplitude.
The probability amplitudes can also be expressed as

ci = 〈ai|ψ〉. (1.10)

It is important to stress that superposition in quantum mechanics im-
plies that the state of the system is simultaneously in the states of the
superposition |ai〉 with amplitudes ci. The “+” sign plays a hugely
significant role, beyond the algebraic one.

In the case of photons, the state of horizontal and vertical polarizations
are superpositions of the helicity eigenstates:

|H〉 =
1√
2
|R〉+

1√
2
|L〉 (1.11)

|V 〉 =
i√
2
|R〉 − i√

2
|L〉 (1.12)

Exercise 1 Show that 〈H|V 〉 = 0.

The state of the system can be rewritten as

|ψ〉 =
∑
i

|ai〉〈ai|ψ〉. (1.13)

Exercise 2 |H〉 and |V 〉 are an orthonormal set of eigenstates. Use
the above definition to express |R〉 and |L〉 in terms of |H〉 and |V 〉.

8. The probability that a measurement of the observable yields an eigen-
value is the absolute-value squared of the probability amplitude corre-
sponding to that eigenvalue. That is

Pi = |ai|2 (1.14)

Pi = a∗i ai. (1.15)

This relation can be expressed in several other forms:

Pi = |〈ai|ψ〉|2 (1.16)

= |ci|ai〉|2 . (1.17)
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Exercise 3 What is the probability of measuring a helicity of +h̄ when
the photon is in state |V 〉?

9. The state vector is normalized:

〈ψ|ψ〉 = 1. (1.18)

This then requires

〈ψ|ψ〉 =

(∑
i

c∗i 〈ai|

)(∑
j

cj|aj〉

)
(1.19)

=
∑
i

c∗i ci, (1.20)

which implies ∑
i

c∗i ci = 1. (1.21)

The latter implies that the sum of probabilities of all outcomes is 1:∑
i

Pi = 1. (1.22)

10. The average value or expectation value of an observable is the sum of
the result of all possible measurement outcomes times the probability
of getting that outcome.

〈A〉 =
∑
i

c∗i ciai. (1.23)

Exercise 4 Find the expectation value of the spin of the photon 〈S〉
when the photon is in state |H〉.

11. A measurement of an observable yields an eigenvalue and projects the
state of the system to the eigenvector corresponding to the eigenvalue
found. Suppose that we have an initial state |ψ〉

|ψ〉 =
∑
i

ci|ai〉 (1.24)
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and then we measure the observable A and get the eigenvalue aj. The
state of the system after the measurement is

|ψ〉new = |aj〉. (1.25)

We note that the probability of obtaining eigenvalue aj is Pj = c∗jcj.
The process of measurement is inherently indeterministic. That is,
that before the measurement we have no idea of what the outcome will
be. We only know the probabilities for each of the possible outcomes.
This is in contrast with the determinism of classical physics, where the
equation of motion in principle determines with certainty the future
outcome of a measurement.

A photon linearly polarized along a direction that forms an angle θ
relative to the horizontal can be expressed by a state |θ〉 that is a
linear superposition of states in the (H,V) basis

|θ〉 = cos θ|H〉+ sin θ|V〉. (1.26)

A polarizer is a measuring device. It has two eigenvalues 1 and 0.
The eigenstate corresponding to the eigenvalue 1 is the state of linear
polarization along the transmission axis, and eigenstate corresponding
to the eigenvalue 0 is the state of linear polarization perpendicular to
the transmission axis of the polarizer. Moreover, the polarizer has also
a functional character. That is, the photon that is transmitted is the
one with eigenvalue 1. The photon that is blocked by the polarizer
has the eigenvalue 0. If a polarizer has its transmission axis along the
horizontal direction, then the probability that a photon in state |θ〉 gets
transmitted is

Pθ = cos2 θ. (1.27)

After the polarizer, the photon is in state |H〉.

Exercise 5 If the transmission axis of the polarizer is at an angle θ
with the horizontal, what is the probability that an incident photon in
state |H〉 gets transmitted? What is the state of the photon after the
polarizer?
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Chapter 2

Operators

Any measurement of an observable A is represented by an operator Â that
acts on the state kets. Operators obey the eigenvalue equation. In this
equation an operator acting on one of its eigenstates produces the eigenvalue
multiplying the eigenstate:

Â|ai〉 = ai|ai〉. (2.1)

In the case of the spin of a photon the spin operator is represented by Ŝ,
so applying its definition

Ŝ|R〉 = −h̄|R〉 (2.2)

Ŝ|L〉 = +h̄|L〉. (2.3)

An operator not acting on one of its eigenstates would then transform the
state into another. Next we look at special cases of operators. For example,
the NOT operator X̂ is one that lives in a 2-dimensional space with state
vectors |0〉 and |1〉, and which transforms one state into another:

X̂|0〉 = |1〉 (2.4)

X̂|1〉 = |0〉 (2.5)

The not operator is similar to the 90-degree mirror in optical systems. If a
photon can travel in the x and y directions, we can define the states by their
direction: |x〉 and |y〉. The 90-degree mirror operator M̂ transforms one into
the other, and thus is a NOT operator:

M̂ |x〉 = |y〉 (2.6)

M̂ |y〉 = |x〉 (2.7)

7
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The beam-splitter has a reflection coefficient r and a transmission coeffi-
cient t. When the beam splitter, with operator B̂ acts on a photon coming
along the x-direction, its splits its amplitude:

B̂|x〉 = t|x〉+ r|y〉, (2.8)

where r = i/
√

2 and t = 1/
√

2.

Exercise 6 An interferometer has two beam splitters and two mirrors, as
shown in Fig. 2.1. A photon reaching the interferometer first encounters
a beam splitter. Its amplitudes then encounter a mirror, and finally they
encounter the second beam splitter. If the state of an incoming photon is
|x〉, the interferometer operation is equivalent to consecutive action of the
operators B̂, M̂ and B̂. Find the probability of the photon ending in state
|x〉 after the interferometer.

Figure 2.1: A Mach-Zehnder interferometer.

2.1 Identity Operator

The identity operator Î is an operator that acting on a vector produces the
same vector. That is, it does nothing:

Î|ψ〉 = |ψ〉. (2.9)

The NOT operator applied twice is the identity operator: X̂X̂ = Î. This
can be also understood with the optics example of 2 mirrors acting like a
periscope, as shown in Fig. 2.2.



2.2. ADJOINT OPERATOR 9

Figure 2.2: A mirror operating twice in a periscope is a unitary operator.

2.2 Adjoint Operator

An operator acting on a ket, can be represented by

Â|ψ〉 = c|φ〉, (2.10)

The complex conjugate of the state on the right is

(c|φ〉)∗ = c∗〈φ| = 〈ψ|Â† (2.11)

The operator Â† is the adjoint of Â.

2.3 Unitary Operator

An operator Û satisfying

Û †Û = Î (2.12)

is called unitary. Unitary operators preserve the norm of the state.

Exercise 7 Show that the NOT operator is unitary.

2.4 Projection Operator

The projection operator projects a state onto the eigenstate of the operator.
The projection operator with eigenstate |ψ〉 is given by

P̂ψ = |ψ〉〈ψ|. (2.13)
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A polarizer can be represented by a projection operator. A polarizer
with transmission axis along the horizontal direction acting on the state |θ〉
of Eq. 1.26 is given by

P̂H |θ〉 = |H〉〈H|θ〉 = |H〉 cos θ. (2.14)

Exercise 8 An incident photon is in state |θ〉. It encounters a polarizer
along the horizontal direction. Then past this polarizer is another polarizer
with transmission axis along the vertical direction. Show using projection
operators that the probability of transmission after the second polarizer is 0.

Exercise 9 Now in the previous example we insert a polarizer aligned along
the diagonal state in between the two polarizers, as shown in Fig. 2.3. The
diagonal state is given by:

|D〉 =
1√
2
|H〉+

1√
2
|V 〉 (2.15)

Apply the projection operators consecutively to find the probability that the
photon gets transmitted after the last polarizer.

Figure 2.3: Two polarizers are orthogonal to each other. A third one rotated
by 45 degrees is inserted in between.

Let us consider a space spanned by eigenstates |ai〉. A general state can
be expressed as a superposition of eigenstates:

|ψ〉 =
∑
i

ci|ai〉, (2.16)

but we know that
ci = 〈ai|ψ〉 (2.17)
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Thus, replacing into Eq. 2.16 we get

|ψ〉 =
∑
i

〈ai|ψ〉|ai〉, (2.18)

=
∑
i

|ai〉〈ai|ψ〉 (2.19)

=

(∑
i

|ai〉〈ai|

)
|ψ〉 (2.20)

So we are left to conclude that∑
i

P̂i =
∑
i

|ai〉〈ai| = 1. (2.21)

We can apply the act of making a measurement by applying the projection
operator. Suppose that we have a photon in the diagonal state of Eq. 2.15.
We place a polarizer with transmission axis horizontal in the path of the
photon. We represent this operation by

P̂H |D〉 = |H〉〈H|D〉 (2.22)

=
1√
2
|H〉. (2.23)

The probability of finding the photon in state |H〉 is

PH =
∣∣∣P̂H |D〉∣∣∣2 = 〈D|H〉|H〉〈H||H〉D〉 =

1

2
(2.24)

Note that the last equation implied a property of the projection operator:

P̂ P̂ = P̂ (2.25)

Furthermore, the state of the light is not the one given by Eq. 2.23 because
it is not normalized. The state of the system initially in state |φ〉 after a
measurement that projects it into a state |ψ〉 is given by

|ψ〉 =
P̂ψ|φ〉√
〈φ|P̂ψ|φ〉

(2.26)

This equation seems silly and circular, but it will become much more useful
when we apply it to a situation with more than one degree of freedom.
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2.5 Hermitian Operator

An operator Â is Hermitian if satisfies

Â† = Â. (2.27)

That is, it is equal to its adjoint. It is also called a self-adjoint operator.
These operators are special because their eigenvalues are real.

Exercise 10 Show that the eigenvalues ai of a self adjoint operator Â are
real. You can do this by calculating the inner product of Â|ai〉 with its
complex conjugate and apply Eq. 2.11.



Chapter 3

Photon Games

We now apply the current formalism to a photon living in a 2-dimensional
space. We will use two types of spaces: one where the degree of freedom is
the momentum space (i.e., direction of propagation along the x and y axes),
and another one where the degree of freedom is the polarization. We will
also introduce the matrix notation to simplify calculations.

3.1 Momentum Space

The matrix representation of the state vectors is

|x〉 =

(
1
0

)
(3.1)

and

|y〉 =

(
0
1

)
, (3.2)

The beam splitters mentioned earlier either reflect or transmit a photon.
The operators for a symmetric beam-splitter applied to the state vectors are

B̂|x〉 = r|y〉+ t|x〉 (3.3)

B̂|y〉 = t|y〉+ r|x〉. (3.4)

The matrix representation of the beam splitter is

B̂ =

(
t r
r t

)
, (3.5)

13



14 CHAPTER 3. PHOTON GAMES

It is straightforward to verify Eqs. 3.3 and 3.4 using this matrix notation.
Suppose we have a Mach-Zehnder interferometer as shown in Fig. 3.1, it has
2 beam splitters and 2 mirrors. In a real interferometer the arms do not have
the same length, so we need to account the phase that the amplitude accrues
in each arm. We do this with the phase shift operator

Figure 3.1: A Mach-Zehnder interferometer for single photons.

Ĝ =

(
eiδ1 0
0 eiδ2

)
, (3.6)

where δi = 2π`i/λ with `i being the length of distance traveled in arm i.
The phase operator Ĝ is unitary, so the state vectors are eigenstates of the
phase-propagating operator. The State of the light after the interferometer
is

|φ′0〉 = Ẑ|φ0〉 (3.7)

where

Ẑ = B̂ĜM̂B̂. (3.8)

Note that all the operators representing these optical elements are unitary.
The interferometer as a whole is also represented by a unitary operator.

Exercise 11 Find an expression for Ẑ

Suppose that

Ẑ =

(
a b
c d

)
, (3.9)

If the initial state is |φ0〉 = |x〉, then the final state is:

|φ′0〉 = a|x〉+ c|y〉 (3.10)
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Exercise 12 If we do an experiment with single photons and put detectors
at the two outputs of the interferometer at B and C, what is the probability
that the photon ends at B (in the state |x〉) after going through the inter-
ferometer? What is the probability that the photon ends at C (in the state
|y〉)?

We start with the photon in an input state going along x. The first
beam splitter puts the photon in a superposition of states (x and y). The
second beam splitter puts the state of the light also into a superposition
of output states. When we do a measurement the probability amplitude is
not a constant number: the total probability amplitude for ending in |x〉
is the superposition of the probability amplitudes for going through both
arms. The probability shows interference. Figure 3.2 shows the results of
a real single-photon experiment. In the y-axis we get photon counts in the
detectors, and in the x-axis of the graph we have the phase difference due
to the two arms of the interferometer δ = δ1 − δ2. This phase is changed
by changing the difference in length between the two arms ∆`, as shown
in Fig. 3.1. We can see in the graph that the number of counts in B and C
oscillates as the phase changes. Those graphs show interference, constructive
where there is a maximum and destructive where there is a minimum.

Figure 3.2: Counts recorded at detectors B and C at the output ports of a
Mach-Zehnder interferometer.
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The interesting part of this is that in quantum mechanics superposition
means that the path that the photon takes is undefined. This notion already
challenges realism, the idea that there is an element of reality to everything.
In our case, the path of the photon. Quantum mechanics says that it is
undefined! Moreover, every time we detect light, we detect whole photons,
not half or fractional photons. So how does it go both ways? Quantum
mechanics says nothing about it. That is up to us, and that is when we get
into trouble. Paul Dirac had a famous statement: “...each photon interferes
only with itself,” which feels like a contradiction: something whole going two
separate ways. That is not all. Detectors B and C in Fig. 3.1 detect photons.
Quantum mechanics only states the probability that the photon is detected.
In the graph of Fig. 3.2 we show detector recordings in 2 seconds. Any given
photon will appear in detector B or C, but not in both. What about right
before being detected? We do not know. A thought introduced by john
Wheeler is that the photon extends both ways, but is detected in only one
place. It “pops” in one of the detectors, and the detector “clicks.” The
detectors can in principle be at the two ends of the universe, and still only
one clicks. All the counts in detectors in B and C of Fig. 3.2 are produced
by different photons.

Note that this is not particular to photons. One could do superposition
of electrons, atoms, etc.

3.2 Polarization Space

If we use polarization as a degree of freedom, and since it is a 2-dimensional
space, we can define vectors the same way we did for momentum states. This
space corresponds to a quantum bit or qubit. This way we define the states
of polarization:

|H〉 =

(
1
0

)
(3.11)

for the state of a horizontally polarized photon, and

|V 〉 =

(
0
1

)
(3.12)

for vertically polarized.
The states |H〉 and |V 〉 are a useful basis, but there are others, such as

the rotated bases. We get to them by rotating the |H〉 and |V 〉 basis via the
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unitary rotation operator:

R̂θ =

(
cos θ − sin θ
sin θ cos θ

)
(3.13)

representing a rotation by θ.

Example

If we rotate states |H〉 and |V 〉 by θ = π/4 we get

R̂π/4|H〉 =
1√
2

(
1 −1
1 1

)(
1
0

)
(3.14)

=
1√
2

(
1
1

)
(3.15)

=
1√
2

(|H〉+ |V 〉) (3.16)

and

R̂π/4|V 〉 =
1√
2

(
1 −1
1 1

)(
0
1

)
(3.17)

=
1√
2

(
−1
1

)
(3.18)

=
1√
2

(−|H〉+ |V 〉) . (3.19)

We define

|D〉 =
1√
2

(|H〉+ |V 〉) (3.20)

|A〉 =
1√
2

(−|H〉+ |V 〉) . (3.21)

Exercise 13 If the rotation operator is given by Eq. 3.29, find the state |θ〉
representing |H〉 rotated by an angle θ.
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3.2.1 Polarization Operators

In a previous section we represented a polarizer by a projection operator.
The polarizer performs a non-unitary operation; it performs a projection. If
the polarizer is aligned horizontally (i.e. with zero rotation), its matrix is
given by:

P̂0 =

(
1 0
0 0

)
(3.22)

Exercise 14 Show that this is consistent with P̂0 = |H〉〈H|.

The rotated polarizer should be equivalent to

P̂θ = |θ〉〈θ|. (3.23)

An alternative way to get the rotated polarizer is

P̂θ = R̂P̂0R̂
†. (3.24)

The matrix form of the adjoint of a matrix is the complex conjugate of the
transpose matrix. Since R̂ has real elements, its adjoint is just the transpose
matrix

R̂†θ =

(
cos θ sin θ
− sin θ cos θ

)
. (3.25)

We can realize that the adjoint of the rotation operator is the rotation oper-
ator rotating the opposite angle:

R̂†θ = R̂−θ. (3.26)

We can also verify that the rotation operator is unitary.
In the optics bag of tricks we have the half-wave plate. It is a birefringent

device that inserts a π phase between the linear components parallel and
perpendicular to its optic axis. When its axis forms an angle of 0 degrees
with the horizontal it is represented by the operator:

Ŵ0 =

(
1 0
0 −1

)
(3.27)

To appreciate what half-wave plate does we need to rotate it. This is done
by rotating the operator an angle θ:

Ŵθ = R̂Ŵ0R̂
† (3.28)
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Exercise 15 Show that the matrix for the rotated half-wave plate is given
by:

Ŵθ =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
(3.29)

It is easy to show that
Ŵπ/4|H〉 = |V 〉. (3.30)

Other important polarization states are the circular states: right circular,

|R〉 =
1√
2

(
1
−i

)
, (3.31)

and left circular

|L〉 =
1√
2

(
1
i

)
(3.32)

These states can be created with a quarter-wave plate. This is another
birefringent device, with matrix given by

Q̂ =

(
1 0
0 i

)
(3.33)

We can rotate the quarter-wave plate. If we do this by 45 degrees, we get
a device that transforms vertical and horizontal polarization into right and
left circular, and viceversa.

Exercise 16 Verify the previous statement.

3.2.2 Polarization Qubits

In the context of qubits we call |0〉 = |H〉 and |1〉 = |V 〉, and so in the
diagonal basis |+〉 = |D〉 and |−〉 = |A〉. Some of the most important gates
for qubits: are implemented by a half-wave plate:

Ẑ = Ŵ0 (3.34)

X̂ = Ŵπ/4 (3.35)

Ĥ = Ŵπ/8. (3.36)

Exercise 17 Show X̂|1〉 = |0〉.

Exercise 18 Show Ẑ|+〉 = |−〉.

Exercise 19 Show Ĥ|−〉 = |1〉.
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3.3 Two Degrees of Freedom: Momentum and

Polarization

A momentum single photon in 2-dimensions corresponds to a qubit, and the
state of polarization is another qubit. Thus we have 2 qubits. First we are
going to set this experiment with bras and kets and then we will set it up
with matrices.

3.3.1 Dirac Notation

Quantum mechanics has a method to generate vectors and operator matrices
of combined Hilbert spaces: it involves the tensor product, which is denoted
by the symbol⊗. It stands to separate the effects of the two spaces separately.
This way, a photon traveling along the x-direction vertically polarized is given
by

|x〉 ⊗ |V 〉 (3.37)

In this case we have four eigenstates. The other three are: |x〉⊗|H〉, |y〉⊗|H〉,
|y〉⊗ |V 〉. Let us send the photon through a beam splitter. A non-polarizing
beam splitter does not affect the polarization, so the operation for this case
is

(B̂ ⊗ Î)|x〉 ⊗ |V 〉 = B̂|x〉 ⊗ Î|V 〉 (3.38)

= (t|x〉+ r|y〉)⊗ |V 〉, (3.39)

= t|x〉 ⊗ |V 〉+ r|y〉 ⊗ |V 〉, (3.40)

= t|x〉|V 〉+ r|y〉|V 〉, (3.41)

where in the last step we have omitted the tensor-product symbol for sim-
plicity. The use of operator Î means that the beam splitter does nothing in
the subspace of polarization. It is important to keep the order of the opera-
tors and the states. Equation 3.41 represents the superposition of a photon
traveling in the x and y directions, which is vertically polarized.

Let us analyze the experiment of the quantum eraser, shown in Fig. 3.3.
After the mirrors (with one capable of moving to change the phase) there are
two half wave plates. Then after the interferometer in the x-direction there
is the possibility of adding a polarizer with transmission axis at 45-degrees
with the horizontal.
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Figure 3.3: The quantum eraser apparatus.

The quantum eraser has three stages: indistinguishable paths, distin-
guishable paths and erased-path information. Let us go through each of
these steps in detail:

1. Indistinguishable Paths In this stage both wave plates have their optic
axis aligned with the horizontal, set to 0. The paths are indistinguish-
able, so we follow the state of the light the following way:

(B̂ ⊗ Î)(Ĝ⊗ Î)(ŴH,0)(M̂ ⊗ Î)(B̂ ⊗ Î)|x〉 ⊗ |V 〉 (3.42)

Step by step, after the first beam splitter:

|ψi〉 = (B̂ ⊗ Î)|x〉 ⊗ |V 〉, (3.43)

= B̂|x〉 ⊗ Î|V 〉, (3.44)

= t|x〉|V 〉+ r|y〉|V 〉, (3.45)

After the mirrors

|ψii〉 = (M̂ ⊗ Î)|ψi〉 (3.46)

= tM̂ |x〉 ⊗ Î|V 〉+ rM̂ |y〉 ⊗ Î|V 〉, (3.47)

= t|y〉|V 〉+ r|x〉|V 〉, (3.48)

Note that we have defined a dual space operator representing the wave-
plates in the two arms. In the first setting they do not change the state:

ŴH,0|x〉|V 〉 = |x〉|V 〉 (3.49)

ŴH,0|y〉|V 〉 = |y〉|V 〉 (3.50)
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So the wave plate operator in this case will do nothing:

|ψiii〉 = ŴH,0|ψii〉 = |ψii〉 (3.51)

Proceeding now with the phase operator

|ψiv〉 = (Ĝ⊗ Î)|ψiii〉 (3.52)

= tĜ|y〉 ⊗ Î|V 〉+ rĜ|x〉 ⊗ Î|V 〉, (3.53)

= teiδ2|y〉|V 〉+ reiδ1|x〉|V 〉, (3.54)

Finally, applying the second beam splitter gives

|ψv〉 = (B̂ ⊗ Î)|ψiv〉 (3.55)

= teiδ2B̂|y〉 ⊗ Î|V 〉+ reiδ1B̂|x〉 ⊗ Î|V 〉, (3.56)

= (tteiδ2 + rreiδ1)|y〉|V 〉+ rt(eiδ1 + eiδ2)|x〉|V 〉, (3.57)

This last equation is the final state of the light. The probability that
the light comes out in the x direction is then

Px =
∣∣rt(eiδ1 + eiδ2)|x〉|V 〉

∣∣2 (3.58)

=
∣∣rt(eiδ1 + eiδ2)

∣∣2 (3.59)

=
1

2
(1 + cos δ), (3.60)

where δ = δ1−δ2. This implies that the probability shows interference.
An experiment with single photons shows interference. The diamond
symbols of Fig. 3.4 represent data as a function of the phase of the
interferometer shown in Fig. 3.3. The data shows interference, as dis-
cussed previously, and corresponds to the case discussed here where the
paths are indistinguishable.

2. Distinguishable Paths. In this stage we rotate one of the wave plates by
45 degrees so that it rotates the polarization of the light going through
it. Thus the wave plate operator changes to ŴH,45/0, which acts on the
state in the following way:

ŴH,45|x〉 ⊗ |V 〉 = |x〉|H〉 (3.61)

ŴH,45|y〉 ⊗ |V 〉 = |y〉|V 〉 (3.62)
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This changes |ψiii〉 above to

|ψiii〉 = ŴH,45|ψii〉 (3.63)

= tŴH,45|y〉|V 〉+ rŴH,45|x〉|V 〉, (3.64)

= t|y〉|V 〉+ r|x〉|H〉, (3.65)

This change affects the subsequent states after phase and second beam
splitter operators:

|ψiv〉 = teiδ2|y〉|V 〉+ reiδ1|x〉|H〉, (3.66)

|ψv〉 = tteiδ2|y〉|V 〉+ rreiδ1|y〉|H〉+ rteiδ1|x〉|H〉+ treiδ2|x〉|V 〉 (3.67)

Note that all four terms contain states that are mutually orthogonal.
So, if we calculate the probability that the photon leaves the interfer-
ometer in the x direction we get

Px =
∣∣rteiδ1|x〉|H〉+ treiδ2|x〉|V 〉

∣∣2 (3.68)

=
∣∣rteiδ1∣∣2 +

∣∣treiδ2∣∣2 (3.69)

=
1

2
. (3.70)

That is, in this situation there is no interference because the probability
is constant. The square symbols in the data of Fig. 3.4 corresponds
to this situation. As can be seen, as the phase difference is changed
the data shows no evidence of interference, in accordance with the
predictions of quantum mechanics. We can interpret this result by
saying that there is path information encoded in the polarization, and
so there is no interference. Note that we did not measure that path
information. Interference disappears even if in principle we can obtain
the path information.

3. Erasing the Path Information The last step in the eraser is to erase
the path information. This is done in a peculiar way: by adding a
polarizer after the interferometer. It sounds counterintuitive that after
the interferometer we decide whether the photon should interfere with
itself or not. Remember that the action of a polarizer with transmission
axis at 45 degrees to the horizontal is to project the state along the
eigenstate of the polarizer, which in this case is given by

P̂45 = |D〉〈D|. (3.71)
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But applying it to orthogonal states gives:

P̂45|H〉 = |D〉〈D|H〉 =
1√
2
|D〉 (3.72)

P̂45|V 〉 = |D〉〈D|V 〉 =
1√
2
|D〉. (3.73)

By inspecting the previous two equations, or more rigorously by ap-
plying Eq. 2.26, lead us that the photon traveling through any of the
two paths is in the same state after the polarizer. At this point we now
want to calculate the probability of detecting the light traveling in the
x direction after the polarizer. We could do this analytically by first
applying two projection operators, one to select the x direction, and
the other, the polarizer.

Px,D = |(|x〉〈x| ⊗ |D〉〈D|)|ψv〉|2 (3.74)

Px,D =

∣∣∣∣rteiδ1 1√
2
|x〉|D〉+ treiδ2

1√
2
|x〉|D〉

∣∣∣∣2 (3.75)

=

∣∣∣∣rt 1√
2

(eiδ1 + eiδ2)

∣∣∣∣2 (3.76)

=
1

4
(1 + cos δ). (3.77)

That is, the interference reappears, or put differently, the polarizer
erased the path-distinguishing information. Note that the circular sym-
bols in the data of Fig. 3.4 show interference, and the maximum counts
go half way, as predicted.

3.3.2 Matrix Notation

Let us redo the previous analysis with the matrix notation. In the tensor
product operation, we multiply each element of one space (propagation di-
rection) to each element of the other space (polarization). The ordering of
spaces in the tensor product is important. In our case, we will order direction
of propagation first, and polarization second.

For example, if we have a vector |A〉 in the space of propagation directions,
and a vector |B〉 in the space of polarization, the tensor product of two vectors
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Figure 3.4: Data on the quantum eraser. Diamonds are the indistinguishable
case; squares correspond to the distinguishable case, and circles correspond
to the eraser.

is:

|A〉|B〉 = |A〉 ⊗ |B〉 =

(
a1

a2

)
⊗
(
b1

b2

)
(3.78)

=

 a1

(
b1

b2

)
a2

(
b1

b2

)
 =


a1b1

a1b2

a2b1

a2b2

 . (3.79)

The eigenstates of our experiment are then:

|x〉|H〉 = |x〉 ⊗ |H〉 =

(
1
0

)
⊗
(

1
0

)
=


1
0
0
0

 , (3.80)

|x〉|V 〉 = |x〉 ⊗ |V 〉 =

(
1
0

)
⊗
(

0
1

)
=


0
1
0
0

 . (3.81)

Exercise 20 Find the vectors for |y〉|H〉 and |y〉|V 〉.



26 CHAPTER 3. PHOTON GAMES

The matrices for the operators in the larger space are the tensor product
of the matrices of the operators that act on each space. For example, an
operator in the direction of propagation space, Â, combines with an operator
in the polarization space, B̂, the following way:

Â⊗ B̂ =

(
a1 a2

a3 a4

)
⊗
(
b1 b2

b3 b4

)
(3.82)

=

 a1

(
b1 b2

b3 b4

)
a2

(
b1 b2

b3 b4

)
a3

(
b1 b2

b3 b4

)
a4

(
b1 b2

b3 b4

)
 (3.83)

=


a1b1 a1b2 a2b1 a2b2

a1b3 a1b4 a2b3 a2b4

a3b1 a3b2 a4b1 a4b2

a3b3 a3b4 a4b3 a4b4

 (3.84)

Notice that the ordering procedure for the elements of the matrix is the same
as for elements of the vectors.

Using the tensor product we can also construct the matrices for the inter-
ferometer. The beam splitter acts on one space and not the other, so it will
be the tensor product of the beam-splitter matrix (first) with the identity
(second). We put identity for the polarization part because the beam splitter
does not alter the polarization. The matrix for the beam splitter in the larger
space will be:

B̂ ⊗ Î =

(
t r
r t

)
⊗
(

1 0
0 1

)
=


t 0 r 0
0 t 0 r
r 0 t 0
0 r 0 t

 , (3.85)

where t = 1/
√

2 and r = i/
√

2.

Exercise 21 Verify that the beam-splitter operator B̂⊗ Î acting |x〉|V 〉 does
not alter the polarization of the state.

Exercise 22 Find the matrix for the mirrors of the interferometer: M̂ ⊗ Î.
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Exercise 23 Find the matrix for the interferometer phase: Ĝ⊗ Î, where δ
is the phase difference between the two arms, and:

Ĝ =

(
1 0
0 eiδ

)
.

The quantum eraser has two wave plates in the arms of the interferometer:
a half wave plate in the upper arm with angle θ and a half-wave plate with
θ = 0 in the lower arm. This is represented analytically in the following way:

Ŵθ,0 = |x〉〈x| ⊗ ŴH,θ + |y〉〈y| ⊗ ŴH,0. (3.86)

The matrix representing it is:

Ŵθ,0 =


cos 2θ sin 2θ 0 0
sin 2θ − cos 2θ 0 0

0 0 1 0
0 0 0 −1

 , (3.87)

Exercise 24 Find an expression for the full interferometer matrix (labori-
ous): Ẑ = (B̂ ⊗ Î)(ŴH,θ/0)(Â⊗ Î)(M̂ ⊗ Î)(B̂ ⊗ Î).

Exercise 25 Verify that when θ = π/4

Ẑ =
1

2


ieiδ i ieiδ 1
i −ieiδ 1 eiδ

ieiδ −1 ieiδ i
i −eiδ i −ieiδ

 , (3.88)

Exercise 26 Indistinguishable paths: Calculate the probability of photons
in state |x〉|V 〉, and entering the interferometer with the waveplate at θ = 0,
exit the interferometer in the same state.

Exercise 27 Find the final state of the light when the wave plate is rotated
an angle θ.
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Exercise 28 Find the probability of the photon leaving the interferometer
in the x-direction and with polarization vertical, as a function of θ.

Exercise 29 Fully Distinguishable Paths: Find the probability that the
photon leaving the interferometer in the x-direction and with polarization
vertical, for θ = π/4.

Exercise 30 The Eraser: Find the probability that the photon leaving the
interferometer with θ = π/4 in the x- direction, and with polarization diag-
onal after being projected by a polarizer at 45 degrees.

Another interesting device is the polarization beam splitter, which trans-
mits horizontally polarized light but reflects vertically polarized light. We
can express it as

B̂p = |I〉 ⊗ |H〉〈H|+ M̂ ⊗ |V 〉〈V |. (3.89)

Exercise 31 Find the matrix expression for the polarization beam splitter.

3.4 Two Degrees of Freedom: Polarization

and Spatial Mode

3.4.1 Spatial Mode: Photon’s Image

Photons emitted by a source carry a spatial probability distribution that is
known as the spatial mode. A common example of this is the transverse
mode of a laser. It normally is in the fundamental Gaussian mode, but by
making modifications to the laser cavity one can have the light exiting the
laser to be in a high-order spatial mode. These spatial modes are solutions
of the wave equation, so that the mode or shape that the light has remains
constant as the light propagates. The spatial modes come in families of
solutions to the wave equation, that depend on the chosen reference frame.
For example, Hermite-Gauss modes are solutions to the wave equation in
rectangular coordinates. Similarly, Laguerre-Gauss modes are solutions to
the wave equation in cylindrical coordinates. The eigenmodes in one family
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can be expressed as linear combination of the modes in the other family.
Spatial modes can also be generated by transmission through custom optical
elements or by diffraction.

The whole concept of spatial mode is unique in that it reveals a that
photons are not tiny particles. Photons have a wave aspect associated to
them, and so they must be solutions to a wave equation and carry a spatial
mode. In the photon sense one can think of the spatial mode as a transverse
probability amplitude. Richard Feynman called photons “waveicles.” When
one sees the image of photons impinging on a camera, the first reaction is
that the photons are the dots. No! Those are the pixels of the camera that
can only detect whole photons. Figure 3.5(a) shows the image of the spatial
mode of a single photon accumulated over many single-photon detections by
an imaging system. The light is in a Laguerre-Gauss mode of order 1, which
has a distinctive doughnut shape.

Figure 3.5: Images of (a) the spatial mode of a single photon, and (b) the
vector mode of a single photon. The color in (b) corresponds to the orienta-
tion of the polarization of the mode. Ellipses mark the measured polarization
at that location.

3.4.2 Vector Modes

Vector modes are non-separable superpositions of spatial mode and polariza-
tion. For example, a vector state could be of the form

|ψ〉 =
1√
2

(|uA〉|H〉+ |uB〉|V 〉) , (3.90)

where uA and uB represent orthogonal spatial modes. Photons prepared in
this state are similar to the ones we discussed earlier in terms of momentum
and polarization. However, in this case a photon traveling through space in a
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given direction carries this multi-dimensional information. It is a state that
has been referred to as self-entangled or classically entangled. Both denomi-
nations are controversial, as many researchers object to such a classification.

The interesting aspect of the vector state is that it does not have a well
defined polarization. In, fact when one measures the polarization via po-
larimetry one finds that the state of polarization varies from point to point.
Laguerre-Gauss modes are characterized by a parameter called the topologi-
cal charge. The vector mode of Fig. 3.5(b) is the measurement of the vector
mode of the light when uA and uB are modes with topological charges 1 and
0, and the polarization states are right and left circular.

3.5 Two Photons in Polarization Space

Another way to have two qubits is to have two photons with each having a
degree of freedom. The first case we will cover is when the degree of freedom
is polarization.

3.5.1 Dirac Notation

If we denote the polarization states of a photon, horizontal and vertical, as
|H〉 and |V 〉, respectively, then the photon pairs that we created in previous
labs would be in the state

|ψ〉 = |V 〉1 ⊗ |V 〉2 = |V 〉1|V 〉2 (3.91)

This state is called a “product state” because the wavefunction of the pair
is the product of the wavefunctions of the two particles. The other three
eigenstates are |H〉1|H〉2, |H〉1|V 〉2 and |V 〉1|H〉2.

If we decide to measure the two photons with polarizers set to angles θ1

and θ2 then we can use the projection operator for each photon

Pθ1 ⊗ Pθ2|ψ〉 = |θ1〉〈θ1|V 〉1|θ2〉〈θ2|V 〉2 (3.92)

= sin θ1 sin θ2|θ1〉|θ2〉 (3.93)

The probability is then
P = sin2 θ1 sin2 θ2 (3.94)

New laboratory techniques allow the production of non-separable or en-
tangled states. In particular, there are four important states also known as
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Bell states:

|Φ±〉 =
1√
2

(|H〉1|H〉2 ± |V 〉1|V 〉2) , (3.95)

|Ψ±〉 =
1√
2

(|H〉1|V 〉2 ± |V 〉1|H〉2) , (3.96)

The importance of this state is that the states of photon 1 and photon 2
cannot be factored out. So measuring the state of one photon implied defining
the state of the other photon. Suppose we have the pair in the state |Φ+〉.
Measuring the state of photon 1 to be horizontal can be accomplished by
putting a polarizer with transmission axis horizontal in the path of photon
1. We formalize this operation by projecting the state. The final state, after
applying Eq. 2.26, is

|ψ〉 = |H〉1|H2〉. (3.97)

We note that before the measurement, the state of polarization the light is
undefined, but after measuring the state of one of the photons, the state of
the other is instantly defined. In this case to |H〉2. Incredulous, Einstein
derided it as “spooky action at a distance.” This correlation is the basis
for nonlocality; that the detection of one photon immediately “collapses”
the wavefunction of the two, instantaneously at faster than the speed of
light. This is the view advocated by Bohr in the so called “Copenhagen
interpretation” of quantum mechanics. We stress though, that the state is
|ψ〉, the joint state. We also note that this does not violate relativity because
when we perform the measurement of photon 1, we do not know the outcome.
Ahead of time we only know the probability of the outcomeL 1/2.

Let us study in more detail the entangled state |Φ+〉. What would the
form of the state be in the diagonal-antidiagonal basis? If you recall, the
diagonal basis states are related to the horizontal-vertical states by Eqs. 3.20
and 3.21.

Exercise 32 Put |H〉 and |V 〉 in terms of |D〉 and |A〉 for each particle in
state |Φ+〉 from Eq. 3.95, and show that

|Φ+〉 =
1√
2

(|D〉1|D〉2 + |A〉1|A〉2) . (3.98)

In the H-V basis the photons are in a superposition of being parallel to
each other in two different ways. In the rotated basis they are also in an
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entangled state that is a superposition of the two possibilities in which they
can be parallel! This is an interesting but unique aspect of state |Φ+〉.

Exercise 33 Show that in the diagonal basis state |Φ−〉 becomes

|Φ−〉 =
1√
2

(|D〉1|A〉2 + |A〉1|D〉2) . (3.99)

That is, in state |Φ−〉 the light switches from being parallel in the H-V basis
to being orthogonal in the D-A basis. Let us go back to |Φ+〉. Suppose that
we now rotate the basis for each photon separately, by an angle θ1 for photon
1 and θ2 for photon 2. We already defined an expression for the vector |θ〉
(Eq. 1.26). We need to define the state for the other vector |θ⊥〉, orthogonal
to |θ〉, so that together they can form a basis:

|θ⊥〉 = − sin θ|H〉+ cos θ|V 〉 (3.100)

Then we replace the relations of Eq. 1.26 and 3.100 in the expression for
|Ψ+〉. If we do some algebra and group the terms we get

|Φ+〉 =
1√
2

[cos(θ1 − θ2)|θ1〉1|θ2〉2 + cos(θ1 − θ2)|θ1⊥〉1|θ2⊥〉2

+ sin(θ1 − θ2)|θ1〉1|θ2⊥〉2 + sin(θ2 − θ1)|θ1⊥〉1|θ2〉2]

(3.101)

We now put polarizers project the state of each photon. Out of convenience,
let us make the transmission axis of the polarizers be along the θ1 and θ2

directions. The probability of detecting a pair is

Pθ1,θ2 = |〈θ1|1〈θ2|2|Φ+〉|2 =
1

2
cos2(θ1 − θ2) (3.102)

The previous equation encodes the correlations between the two photons.
If θ1 = θ2 (parallel) the probability is maximum, and if they are θ1 = θ2±π/2
(perpendicular) it is zero. If we express the pair in the same basis (i.e.,
θ1 = θ2 = θ), we see that they are in the state

|Φ+〉 =
1√
2

(|θ〉1|θ〉2 + |θ⊥〉1|θ⊥〉2) (3.103)

That is, they have a remarkable property: even though their polarization is
undefined, it is in a superposition of both photons being linearly polarized
parallel to each other, regardless of orientation. This type of correlation
works for another Bell state: |Ψ−〉, but not for the remaining two.
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Exercise 34 Show that photons in state |Ψ−〉 are in a superposition of al-
ways being orthogonal in any basis.

Yet, there are pagans. This the realistic view: photons’ polarization is
not undefined and in state |Φ+〉, they are just in |H〉1|H〉2 half the time,
and in state |V 〉1|V 〉2 the remaining time. This situation is called the mixed
state. How do we know that the photons are not in a mixed state? What is
the probability of detection predicted for the mixed state? It is given by

Pmix =
1

2
|〈θ1|1〈θ2|2|H〉1|H〉2|

2 +
1

2
|〈θ1|1〈θ2|2|V 〉1|V 〉2|

2 (3.104)

Pmix =
1

2
cos2 θ1 cos2 θ2 +

1

2
sin2 θ1 sin2 θ2. (3.105)

Notice that Eqs. 3.102 and 3.105 have a different functional form. Thus, we
have a chance to find out which one is correct. When θ2 = 0 both give the
same answer:

Pθ1,θ2 = Pmix = (1/2) cos2 θ1. (3.106)

However, if θ2 = π/4 they give a different answer:

Pθ1,π/4 = (1/2) cos2(θ1 − π/4), (3.107)

while

Pmix = 1/4. (3.108)

In Fig. 3.6 we show the data obtained for the two cases discussed above:
entangled and mixed. This distinction can already be considered as evidence
of the distinction between entangled and mixed states. The measurements
were done at about the same time. However, quantum mechanics does not
specify a time or a place for the two measurements, So they could be done
at distinct times and places and the results would be the same.
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Figure 3.6: Data the measurement of coincident detections when the photons
are in the entangled state |Φ+〉 (squares) and in the mixed state (circles)
where the light is half the time in |H〉1|H〉2 and the other half in |V 〉1|V 〉2.

3.5.2 Matrix Form

Similar to the case of a single photon in two degrees of freedom we combine
the vectors of each subspace using the tensor product. The eigenstates are

|H〉1|H〉2 =


1
0
0
0

 , (3.109)

|H〉1|V 〉2 =


0
1
0
0

 , (3.110)

|V 〉1|H〉2 =


0
0
1
0

 , (3.111)

|V 〉1|V 〉2 =


0
0
0
1

 . (3.112)
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State |Φ+〉 is then given by

|Φ+〉 =
1√
2


1
0
0
1

 , (3.113)

Operators will then follow the same tensor rules as before.

3.5.3 Production of Polarization-Entangled states

Spontaneous parametric down-conversion is a laboratory technique to pro-
duce pairs of photons from an input parent photon. Let us label the pump
photon as photon “0,” and the down-converted photons as “1” and “2.”
Energy is conserved in down-conversion, and so

E0 = E1 + E2 (3.114)

Momentum is also conserved. However, this occurs inside the crystal where
the photon momentum is modified because p = h/λ with λ = λ0/n, where λ0

is the wavelength in vacuum, and n is the index of refraction of the material.
In our case, we will pick the down-converted photons when they have the
same energy, or E1 = E2, and so they come out of the crystal at the same
angle (α1 = α2 = α). By tilting the crystal we can change α.

Figure 3.7: Momentum conservation in parametric down-conversion

Exercise 35 What is the wavelength of the down-converted photons (in
vacuum)?

The polarization state of the down-converted light depends on the polar-
ization of the pump beam and the type of crystal. With one Type-I crystal,
if the pump beam is, say horizontally polarized, the downconverter photons
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Figure 3.8: Method to produce polarization-entangled states: the bottom
setup is a superposition of the two cases above.

are vertically polarized. If we change the polarization of the pump to vertical
and not touch the crystal, we would not get down-conversion. However, if we
rotate the crystal by 90◦ we get horizontally polarized pairs. A clever trick
is to put two thin down-conversion crystals back to back but rotated by 90◦

with respect to each other. When we send a pump beam polarized at 45◦ to
the pair of crystals, as shown in Fig. 3.8, the horizontal component of the
pump polarization produces vertically polarized pairs with one crystal and
the vertical component produces horizontally polarized pairs with the other
crystal. If the crystal separation is thinner enough and if the crystal width
is smaller than the beam width, then there is no way to tell in which crystal
the photon pairs were created. Thus when the paths are indistinguishable
the photon pairs get created into a state that is a superposition of the two
possibilities:

|Φ〉 =
1√
2

(
|H〉1|H〉2 + |V 〉1|V 〉2e

iδ
)
, (3.115)

where δ is a phase between the two possibilities, because they are not identi-
cal: in one case the pump creates the pairs in one crystal and the pairs travel
at a certain speed through the second crystal; in the other case the pump
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travels through the first crystal at a different speed, and produces the pairs
in the second crystal. In the lab we can put a birefringent crystal before
the down-conversion to equilibrate the times that each polarization takes, as
shown in Fig. 3.9, and so the phase is δ = 0, and we get |Φ+〉. We note that
we can get the other Bell states by putting wave plates in the path of the
down-converted photons. For example, if we put a half wave plate with axis
vertical in the path of photon 1 we introduce a phase of π in between |H〉1
and |V 〉2. This phase gets introduced into the state |Φ+〉 to turn it into |Φ−〉.

Figure 3.9: Apparatus to produce polarization-entangled photons and to
characterize the state via a Bell test of by quantum state tomography. Optical
elements are Half-wave plates (H), and polarizers (P), and phase-adjusting
crystal (S).

Exercise 36 What optical elements do we have to add to make state |Ψ−〉?

3.5.4 The Density Matrix

The Dirac notation in the vector form does not account for mixed states. A
more formal way to treat mixed states within quantum mechanics is with the
density matrix. Below we define the basic principles.

Pure State

For a pure state |ψ〉 the density matrix is defined as

ρ̂ψ = |ψ〉〈ψ|. (3.116)
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That is, it is the outer product of the state vector with itself. As an example
consider the state |Φ+〉. It is given in matrix form by

ρ̂Φ+ =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 . (3.117)

Let us consider for a moment the density matrix of a product state, such
as |H〉1|H〉2. It is the outer product of the vector of Eq. 3.109. It is not
hard to see that the density matrix has element ρ1,1 = 1/2 (located in the
upper-left corner), with ρi,j = 0 for other elements (i.e., zeros in the other
locations). Similarly, the density matrix for state |H〉1|V 〉2, will be a matrix
with ρ2,2 = 1/2 (second along the diagonal) with zero otherwise. Similarly,
a non-zero value for the other diagonal elements correspond to the cases
of |V 〉1|H〉2 and |V 〉1|V 〉2. There is a popular way to “graph” the density
matrix. It consists of a 3-dimensional bar-graph, as shown in Fig. 3.12. The
two dimensional plane locates the location of the element, with the third
dimension, the bar, indicating its numerical value.

Figure 3.10: Graphical representation of the density matrices of two Bell
states: |Φ+〉 (a) and |Φ−〉 (b).

Exercise 37 Find the density matrix for state |Ψ−〉.

Some properties of the density matrix are:
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• It has the form of the projector operator, so it satisfies

ρ̂ρ̂ = ρ̂ (3.118)

• Normalization is accomplished by the trace operation (the sum of the
diagonal elements of the matrix):

Tr(ρ̂) = 1 (3.119)

This can be shown from the property of the trace. Suppose ρ̂ = |ψ〉〈ψ|.
If the eigenvectors of ρ̂ are |φi〉, then the trace of a matrix in that basis
is

Tr(Â) =
∑
i

〈φi|Â|φi〉. (3.120)

Applying this to the density matrix:

Tr(ρ̂) =
∑
i

〈φi|ρ̂|φi〉 (3.121)

=
∑
i

〈φi|ψ〉〈ψ|φi〉 (3.122)

=
∑
i

〈ψ|φi〉〈φi|ψ〉 (3.123)

= 〈ψ|

(∑
i

|φi〉〈φi|

)
|ψ〉 (3.124)

= 〈ψ|ψ〉 (3.125)

= 1. (3.126)

• It is Hermitian:
ρ̂† = ρ̂ (3.127)

As a consequence, its eigenvalues are real.

Other properties of the trace are:

Tr[ÂB̂] = Tr[B̂Â], (3.128)

Tr[Â+ B̂] = Tr[Â] + Tr[B̂], (3.129)

Tr[ĉA] = cTr[Â], (3.130)

Tr[Â⊗ B̂] = Tr[Â]⊗ Tr[B̂], (3.131)

Tr[ÂB̂ĈD̂] = Tr[B̂ĈD̂Â] = Tr[ĈD̂ÂB̂] = Tr[D̂ÂB̂Ĉ]. (3.132)

where Â and B̂ are matrices and c is a constant.



40 CHAPTER 3. PHOTON GAMES

Mixed State

The mixed state is the probabilistic combination of two or more pure states.
For the case of the mixture of state |ψ〉 with probability Pψ and state |φ〉
with probability Pφ, with Pψ + Pφ = 1,

ρ̂m = Pψ|ψ〉〈ψ|+ Pφ|φ〉〈φ| (3.133)

As an example, let us find the mixed state mentioned earlier: the realistic
alternative to the |Φ+〉. It entails the product states each with a probability
of 1/2

ρ̂HH,V V =
1

2
|H〉1|H〉2〈H|1〈H|2 +

1

2
|V 〉1|V 〉2〈V |1〈V |2 (3.134)

=
1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (3.135)

Notice the difference in the density matrix between the mixed and entangled
state. That difference will lead to a real measurable effect, shown below.

Probability

The probability that one state |ψ〉 be in another state |φ〉. That is the
absolute-value squared of the inner product is:

|〈ψ|φ〉|2 = Tr(ρ̂ψρ̂φ) (3.136)

Exercise 38 Prove the previous relation.

Expectation Value

The expectation value of an operator Â when the system is in state |ψ〉 is

〈ψ|Â|ψ〉 = Tr(Âρ̂ψ) (3.137)
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Transformation

If the state |ψ〉 is processed by a device represented by the unitary operator
say R̂, becoming state |φ〉, the state-vector equation is

|φ〉 = R̂|ψ〉 (3.138)

The density matrix of the transformed state can be obtained from the density
matrix of the initial state via

ρ̂φ = R̂ρ̂ψR̂
†, (3.139)

where R̂† is the adjoint of R̂.

3.5.5 Bell Inequalities

Let us work out the correlations; joint detection probabilities when we project
the state of the light with polarizers at angles θ1 and θ2. Rather than using
projection operators, we calculate the probability that the initial state be in
state

|θ1〉1|θ2〉2 (3.140)

The density matrix is a bit laborious

ρ̂θ1,θ2 = |θ1〉1|θ2〉2〈θ1|1〈θ2|2 = (3.141)

=


cos2 θ1 cos2 θ2

1
2

cos2 θ1 sin 2θ2
1
2

sin 2θ1 cos2 θ2
1
4

sin 2θ1 sin 2θ2
1
2

cos2 θ1 sin 2θ2 cos2 θ1 sin2 θ2
1
4

sin 2θ1 sin 2θ2
1
2

sin 2θ1 sin2 θ2
1
2

sin 2θ1 cos2 θ2
1
4

sin 2θ1 sin 2θ2 sin2 θ1 cos2 θ2
1
2

sin2 θ1 sin 2θ2
1
4

sin 2θ1 sin 2θ2
1
2

sin 2θ1 sin2 θ2
1
2

sin2 θ1 sin 2θ2 sin2 θ1 sin2 θ2

 .

(3.142)
Then, after some more labor, we get

Tr(ρ̂θ1,θ2 ρ̂Φ+) =
1

2
cos2(θ1 − θ2) (3.143)

In contrast, redoing the calculation for mixed states gives

Tr(ρ̂θ1,θ2 ρ̂m) =
1

2
(sin2 θ1 sin2 θ2 + cos2 θ1 cos2 θ2) (3.144)

Exercise 39 Demonstrate the last equation (Not to worry: most of the work
was Eq. 3.142).



42 CHAPTER 3. PHOTON GAMES

Equations 3.143 and 3.144 are obviously different. Note that both predict
a probability of 1/2 when θ1 = θ2 = 0, yet they differ dramatically when
θ1 = −θ2 = π/4: entangled correlations give 0 whereas mixed correlations
give 1/8. This is consistent with the previous discussion of examining the
two possibilities in the (H, V ) and (D,A) bases.

The discrepancy given above is a first step in distinguishing quantum
states from local realistic states. In 1964 John Bell put forth a successful
effort to distinguish quantum correlations from local realistic ones. They
are in the form of inequalities that a “complete” local realistic quantum me-
chanics would satisfy if only certain “hidden variables” in the theory existed.
Quantum mechanics without any local realistic corrections would violate the
inequalities. This started a 3-decade-long quest for a definitive answer, with
several versions of inequalities put forth with experimentally confirmed vi-
olations. By now it is fairly well accepted that quantum mechanics rules.
One of the versions of Bell inequalities we present here goes by the Clauser-
Horne-Shimony-Holt (CHSH) inequality, after the names of the authors.

We begin by defining a variable E that expresses the correlation between
the polarizations of the two photons. If they are perfectly correlated (parallel,
as in state |Φ+〉) then E = 1 and if they are perfectly anticorrelated (i.e.,
orthogonal, as in state |Ψ−〉) then E = −1. If they are uncorrelated then
E = 0. The expectation value of the correlation can be defined for arbitrary
angles θ1 and θ2. At these angles E is

E(θ1, θ2) =(+1)P (θ1, θ2) + (+1)P (θ1 +
π

2
, θ2 +

π

2
)+

(−1)P (θ1, θ2 +
π

2
) + (−1)P (θ1 +

π

2
, θ2),

(3.145)

or simply

E(θ1, θ2) = P (θ1, θ2)+P (θ1+
π

2
, θ2+

π

2
)−P (θ1, θ2+

π

2
)−P (θ1+

π

2
, θ2), (3.146)

It can be shown that for state |Φ+〉 we have that the expectation value of
the correlation is

Eent(θ1, θ2) = cos[2(θ1 − θ2)] (3.147)

The perfect correlation of the state |Φ+〉 is manifested in Eq. 3.147 because
E(θ, θ) = 1 regardless of θ. The mixed state gives a different correlation

Emix = cos(2θ1) cos(2θ2). (3.148)
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Therefore, one can find situations where the two expectation values give
different results.

States |Φ−〉 and |Ψ+〉 have a degree of correlation E(θ, θ) that depends
on the basis. For state |Ψ−〉 the correlation is

E(θ1, θ2) = − cos[2(θ1 − θ2)]. (3.149)

Therefore, for state |Ψ−〉 the correlation is E(θ, θ) = −1 regardless of θ.
CHSH defined a variable S that depends on 4 angles, two for each photon:

θ1, θ′1, θ2 and θ′2. It is given by

S = E(θ1, θ2)− E(θ1, θ
′
2) + E(θ′1, θ2) + E(θ′1, θ

′
2), (3.150)

where θ1 and θ′1 are two polarizer angles for photon 1, and similarly, θ2 and
θ′2 are two angles for photon 2. The inequality that a local realistic theory
must satisfy is:

|S| ≤ 2. (3.151)

Entangled states measured at certain angles will violate this inequality. This
is done with an apparatus similar to the one in Fig. ??.

Exercise 40 Find S for θ1 = −45◦, θ′1 = 0, θ2 = −π/8 and θ′2 = π/8 to
show that the inequality of Eq. 3.151 is violated for state |Φ+〉.

Exercise 41 Show that the inequality of Eq. 3.151 with Emix of Eq. 3.148
is satisfied when θ1 = −45◦, θ′1 = 0, θ2 = −π/8 and θ′2 = π/8.

3.5.6 Quantum State Tomography

In the previous section we presented the conditions that prove that quan-
tum mechanics and nature are not consistent with local realism. Thus, we
can prepare a state that contains the essence of superposition in quantum
mechanics. Fair enough, we prepare the state using a simple apparatus, as
shown before. But then we should ask, aside from a Bell test, how do we know
how good is the state that we produced? The appropriate step is to measure
the state. Because it can have some mixture in it due to distinguishability of
an imperfect apparatus, we need to measure the density matrix of the state.
We can do this by projective measurements using the apparatus of Fig. 3.9.
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The Measured Density Matrix

Earlier we mentioned how we project a state. This operation is given by
Eq. 3.136. Suppose that we consider the projection of the unknown state
with density matrix ρ̂ onto state |H〉1|H〉2, it can be easily seen that it yields
Tr(ρ̂ρ̂HH) = ρ11. Thus, if we send the photon pairs through two horizontal
polarizers, we would get a number of counts that is proportional to ρ11. It
can easily be seen that the projections onto states |H〉1|V 〉2, |V 〉1|H〉2 and
|V 〉1|V 〉2 directly yield respective measurements of ρ22, ρ33 and ρ44. Other
state projections, such as |D〉1|R〉2, give rise to linear combinations of matrix
elements ρij. Thus, one can find a set of 16 projections, and by linear inver-
sion obtain all the elements ρij. A convenient and straight-forward method
to do this has been described by James et al.1 Their method uses the pro-
jections shown in Table 3.5.6. We also show the expected probabilities for

Table 3.1: Probabilities for the projections involved in the quantum state
tomography of the state |Φ+〉 and |Ψ−〉 and the corresponding mixed states.

State Ψ+ pure (HH,VV) mixed Φ− (HV,VH) mixed
|H〉1|H〉2 0.5 0.5 0 0
|H〉1|V 〉2 0 0 0.5 0.5
|V 〉1|V 〉2 0.5 0.5 0 0
|V 〉1|H〉2 0 0 0.5 0.5
|R〉1|H〉2 0.25 0.25 0.25 0.25
|R〉1|V 〉2 0.25 0.25 0.25 0.25
|D〉1|V 〉2 0.25 0.25 0.25 0.25
|D〉1|H〉2 0.25 0.25 0.25 0.25
|D〉1|R〉2 0.25 0.25 0.25 0.25
|D〉1|D〉2 0.5 0.25 0 0.25
|R〉1|D〉2 0.25 0.25 0.25 0.25
|H〉1|D〉2 0.25 0.25 0.25 0.25
|V 〉1|D〉2 0.25 0.25 0.25 0.25
|V 〉1|L〉2 0.25 0.25 0.25 0.25
|H〉1|L〉2 0.25 0.25 0.25 0.25
|R〉1|L〉2 0.5 0.25 0.5 0.25

1D.F.V. James, P.G. Kwiat, M.J. Munro and A.G. White “Measurement of qubits,”
Physical Review A 64, 052312 (2001).
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the pure and mixed states. Notice that only two projections give a difference
between pure and mixed. Figure 3.11 shows the measured density matrices
of actual data obtained when producing the states |Φ+〉, |Ψ−〉 and the mixed
state for (HH,VV). In principle this linear algebraic procedure is enough to

Figure 3.11: Quantum state tomography of two pure states: |Φ+〉 (a) and
|Ψ−〉 (c); and the mixed state corresponding to (HH,VV). Experimentally,
state (a) was produced directly from the source described in Sec. 3.5.3; state
(b) was produced in the same way but by adding a birefringent optic in
the path of the pump that made the horizontal and vertical components of
the pump incoherent, and thus producing an incoherent mixture of down
converted photons in HH and VV; state (c) was produced with the setup of
(a) but by adding two half-wave plates in the path of photon 2: one at π/2
with the horizontal to flip H and V and the other aligned with the vertical
to flip the sign.

give us the proper density matrix, although there are ways to optimize the
result even further that we will not discuss here.

Fidelity

What do we do with the measured density matrix? Since the density matrix
can be represented by

ρ̂ =
∑
i

pi|ψi〉〈ψi|, (3.152)

where pi are probabilities and ψi are pure states, we can reinterpret the
equation as an expansion in terms of eigenvalues (pi) and eigenvectors (ψi).
If we diagonalize the state of Fig. 3.11(a), we obtain:

p1 = 0, p2 = 0, p3 = 0.02, p4 = 0.98.
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This implies that most of the probability is in the fourth eigenvector:

|ψa,4〉 =


0.68
−0.06
0.07
0.73

 , (3.153)

which is very close to |Φ+〉 = (0.71, 0, 0, 0.71)T . For the case of Fig. 3.11(c)
we get similar results. The eigenvalues are

p1 = 0, p2 = 0, p3 = 0.03, p4 = 0.97.

The last eigenvalue corresponds to the eigenvector

|ψc,4〉 =


0.07
−0.71
0.69
0.07,

 , (3.154)

which is close to |ψ−〉 = (0,−0.71, 0.71, 0)T .
Alternatively, we can calculate the fidelity of the state measured in (a)

with state |Φ+〉. That is the probability of projecting of the measured state
onto |Φ+〉. One possibility is to use Eq. 3.136. This however is restricted to
the case of pure states. For states that are mixed the fidelity between two
states |ψ〉 and |φ〉 is given by

F =

[
Tr

(√√
ρ̂φρ̂ψ

√
ρ̂φ

)]2

. (3.155)

Applying the above relation for the fidelity of the density matrix of Fig. 3.11(a)
with state |Φ+〉, we get the value listed in Table 3.2. Similarly, the fidelity
of the state in (c) with state |Ψ−〉 is given in the table. Note that there are
not too dis-similar to the eigenvalues obtained in the diagonalization of the
corresponding density matrices. The state of Fig. 3.11(b) is a mixture of two
eigenstates: |H〉1|H〉2 and |V 〉1|V 〉2. The fidelity with these states are shown
in Table 3.2, near 0.5, which is to be expected.

Concurrence and Tangle

Consider a 2-qubit state, such as the ones we have been discussing:

|ψ〉 = a|H〉1|H〉2 + b|H〉1|V 〉2 + c|V 〉1|H〉2 + d|V 〉1|V 〉2 (3.156)
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Table 3.2: Quantum measures of the states given by the measured density
matrices of Fig. 3.11.

State Fidelity (F) Tangle (T ) Linear Entropy (S)
(a) 0.97 0.92± 0.05 0.05± 0.08
(b) 0.48, 0.50 0.009± 0.003 0.66± 0.02
(c) 0.96 0.96± 0.03 0.03± 0.04

If b = c = 0 and a = d = 1/
√

2 we are left with state |Φ+〉. The latter state is
non-separable or non-factorable. Conversely, if c = d = 0 and a = b = 1/

√
2,

the state is separable into a product state of photons 1 and 2.

Exercise 42 Show that if ad = bc the state can be factored into a product
of states of the two photons.

The concurrence for a pure state of two photons can be shown to be given
by

C = 2|ad− bc| ≥ 0. (3.157)

Thus, it is zero for product states and 1 for maximally entangled states (i.e.,
states |Φ±〉 and |Ψ±〉). For a general state that can have a certain degree
of mixture the concurrence has a more elaborate definition that we do not
give here, but it still remains as a way to quantify the entanglement or the
non-separability. A fully mixed state is indeed not entangled, and so C=0.
The Tangle is a more stringent measure and given by

T = C2. (3.158)

The measures of tangle for the the states of Fig. 3.11 are given in Table 3.2.
Note that (a) and (c) are almost pure and entangled, whereas (b) has no
entanglement whatsoever.

Linear Entropy

In information theory the entropy is the measure of the uncertainty in the
state of the system. An associated quantity is the linear entropy. This
quantity quantifies the degree of mixture in a quantum state. For a two-
qubit system is given by

S =
4

3

(
1− Tr[ρ̂2]

)
=

4

3

(
1−

∑
i

p2
i

)
. (3.159)
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For a pure state there eigenvalues of ρ̂ has probability 1 (the other 3 are zero),
and thus S = 0. Alternatively, for a pure state: ρ̂2 = ρ̂, so the linear entropy
of Eq. 3.159 is zero. States (a) and (c) of Fig. 3.11 give linear entropies that
are consistent with zero. Conversely, for a fully mixed state S = 1. A fully
mixed state would only have diagonal elements with equal probability of 1/4,
which gives S = 1 with Eq. 3.159. State (b) of Fig. 3.11 is a mixture of only
two states with probabilities close to 1/2. Therefore, the linear entropy given
in Table 3.2 is near 0.5.

Werner States

In a given situation where either the production of the state is imperfect
or the time evolution interactions produce decohering effects, the quantum
measures of the state are somewhat in between for both T and S. Werner
states are a peculiar type of states that straddle between full entanglement
and full mixture. The density matrix of a Werner state is given by

ρ̂W = p|ψ〉〈ψ|+ (1− p) Î
4
, (3.160)

where p is a parameter between 0 and 1 representing the probability of either
aspect of the state, and Î/4 being the diagonal matrix representing the fully
mixed state.

3.6 Stokes Parameters and the Mueller Ma-

trix

The Stokes parameters specify the polarization properties of the light. Here
we consider single and two-photon stokes parameters.

3.6.1 One Photon Qubit

We will be using the horizontal-vertical basis: Eqs. 3.11 and 3.12. The density
matrix ρ corresponding to a state |ψ〉 can be expressed in terms of the Stokes
parameters

ρ̂ = |ψ〉〈ψ| = 1

2

3∑
i=0

siσ̂i =
1

2

(
s0 + s1 s2 + is3

s2 − is3 s0 − s1

)
, (3.161)
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where the σi are the Pauli matrices, which we define here as:

σ̂0 =

(
1 0
0 1

)
(3.162)

σ̂1 =

(
1 0
0 −1

)
(3.163)

σ̂2 =

(
0 1
1 0

)
(3.164)

σ̂3 =

(
0 i
−i 0

)
(3.165)

We note that we define the ordering of the Pauli matrices differently than
usual because we use |0〉 = |H〉 and |1〉 = |V 〉 instead of |0〉 = |R〉 and
|1〉 = |L〉. The Stokes parameters can be obtained by measurements:

s0 = |〈H|ψ〉|2 + |〈V |ψ〉|2 (3.166)

s1 = |〈H|ψ〉|2 − |〈V |ψ〉|2 (3.167)

s2 = |〈D|ψ〉|2 − |〈A|ψ〉|2 (3.168)

s3 = |〈R|ψ〉|2 − |〈L|ψ〉|2. (3.169)

Conversely, in terms of the density matrix,

si = Tr[ρ̂σ̂i] (3.170)

Example

Consider the diagonal state |D〉 defined by Eq. 3.20. The corresponding
density matrix is

ρ̂D = |D〉〈D| = 1

2

(
1 1
1 1

)
It is easy to see that the corresponding Stokes parameters are

s0 = |〈H|D〉|2 + |〈V |D〉|2 =
1

2
+

1

2
= 1

s1 = |〈H|D〉|2 − |〈V |D〉|2 =
1

2
− 1

2
= 0

s2 = |〈D|D〉|2 − |〈A|D〉|2 = 1− 0 = 1

s3 = |〈R|D〉|2 − |〈L|D〉|2 =
1

2
− 1

2
= 0.
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Turning it around it can be seen that

1

2
(σ̂0 + σ̂2) = ρ̂D

Exercise 43 Find the Stokes parameters for states |V 〉 and |R〉

Exercise 44 Show that
Tr[σ̂iσ̂j] = 2δij, (3.171)

where δij is the Kronecker delta, equal to 1 if i = j, and 0 when i 6= j.

When a material or device changes the state of the light from |ψ〉 to |ψ′〉,
its action can be represented by an operator T̂ such that

|ψ′〉 = T̂ |ψ〉. (3.172)

Equivalently, the final density matrix is given by

ρ̂′ = T̂ ρ̂T̂ † (3.173)

The transformation is also explained using the Mueller matrix. If we
consider the stokes parameters as elements of a vector ~S

~s =


s0

s1

s2

s3

 (3.174)

such that
~s′ = M̂~s (3.175)

The final Stokes parameters can be expressed as

s′i = Tr[ρ̂′σ̂i] (3.176)

= Tr[T̂ ρ̂T̂ †σ̂i] (3.177)

= Tr[T̂ (
∑
j

sjσ̂j)T̂
†σ̂i] (3.178)

=
∑
j

Tr[T̂ σ̂jT̂
†σ̂i]sj (3.179)

=
∑
j

Mijsj. (3.180)
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Thus,

Mij =
1

2
Tr[T̂ σ̂jT̂

†σ̂i]. (3.181)

In using the cyclic trace property of Eq. 3.132 we put Eq. 3.181 in the more
convenient form2

Mij =
1

2
Tr[σ̂iT̂ σ̂jT̂

†]. (3.182)

Example

In an earlier example we showed that R̂π/4|H〉 = |D〉, then for this case

T̂ = R̂π/4 and T̂ † = R̂−π/4. According to the previous relation we can find
the elements of the Mueller matrix, which is a 4 × 4 matrix. It is easy to
find:

M̂(R̂π/4) =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1


Since

~sH =


1
1
0
0

 and ~sD =


1
0
1
0


we can see that M̂(R̂π/4)~sH = ~sD.

A common method to get the Mueller matrix using linear algebra involves
selecting a suitable set of 4 input states, which we label by k. If for a given
input state k the Stokes parameter i is sik, with output Stokes parameter j
given by s′jk, then by definition of the Mueller matrix

s′jk = Mjisik (3.183)

If we assemble the matrices N and N ′ formed by the Stokes vectors for states
k such that

Nik = sik (3.184)

and
N ′ik = s′ik, (3.185)

2Toppel et al. New J. Phys. 16, 073019 (2014).
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then we get that
N̂ ′ = M̂N̂. (3.186)

From this we get
M̂ = N̂ ′N̂−1 (3.187)

provided det(N̂) 6= 0.

Example

Continuing the previous example we wish to determine the Mueller matrix by
knowing what it does to 4 input states, suppose we chose our 4 k states to be
|H〉, |V 〉, |D〉 and |R〉. In a previous example we found ~sH = (1 1 0 0)T and
~sD = (1 0 1 0)T . The answer to a follow-up exercise is ~sV = (1 − 1 0 0)T and
~sR = (1 0 0 1)T . Since we “know the answer” (that the state changing device
is a rotator set to π/4), we know that the output states are R̂π/4|H〉 = |D〉,
R̂π/4|V 〉 = |A〉, R̂π/4|D〉 = |V 〉 and R̂π/4|R〉 = exp(π/4)|R〉. The assembled
matrices for this example are then

N̂ =


1 1 1 1
1 −1 0 0
0 0 1 0
0 0 0 1

 and N̂ ′ =


1 1 1 1
0 0 −1 0
1 −1 0 0
0 0 0 1


The inverse of N̂ is

N̂−1 =
1

2


1 1 −1 −1
1 −1 −1 −1
0 0 2 0
0 0 0 2

 ,

with det(N̂) = −2. It can be confirmed that M̂(R̂π/4) = N̂ ′N̂−1 with the
matrices given above.

3.6.2 Two Photon Qubits

For two qubits the Stokes parameters have 16 elements sµν with µ, ν =
0, 1, 2, 3. The density matrix has 16 elements, as seen previously in Sec. 3.5.4.
The two-qubit Stokes parameters are defined as:3

sµν = Tr[ρ̂(σ̂µ ⊗ σ̂ν)]. (3.188)

3James et al. Phys. Rev. A 64, 052312 (2001).
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Conversely, the density matrix can be expressed in terms of the two-qubit
Stokes parameters:

ρ̂ =
1

4

3∑
µ=0

3∑
ν=0

sµν(σ̂µ ⊗ σ̂ν) (3.189)

Before we discuss the more general case, it is important to note that
the two-photon density matrix already has the individual information of the
state of each photon. The density matrix of photon 1 can be obtained by
“tracing” over the second photon, yielding

ρ̂1 =

(
ρ11 + ρ22 ρ13 + ρ24

ρ31 + ρ42 ρ33 + ρ44

)
. (3.190)

This is equivalent to detecting the second photon without distinguishing its
polarization. The Stokes vector of photon 1 independently of photon 2 is

~s1 =


s00

s10

s20

s30

 , (3.191)

and equivalently for photon 2:

~s2 =


s00

s01

s02

s03

 . (3.192)

In terms of the elements of the density matrix:4

~s1 =


ρ11 + ρ22 + ρ33 + ρ44

ρ11 + ρ22 − ρ33 − ρ44

2Re(ρ13) + 2Re(ρ24)
2Im(ρ13) + 2Im(ρ24)

 (3.193)

Bell states have a particular symmetry. It can be shown by direct calcu-
lation that

sµν = 0 when µ 6= ν (3.194)

4A. Abouraddy et al. Opt. Commun. 201, 93-98 (2002).
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for maximally entangled states. Then by the relations of Eqs. 3.191 and 3.192
we have ~s1 = (1 0 0 0)T and ~s2 = (1 0 0 0)T . The degree of polarization for
a single photon is given by

DOP =
√
s2

1 + s2
2 + s2

3. (3.195)

For a pure state DOP = 1. Thus, each photon in an entangled state has
DOP = 0, and so it is individually unpolarized.

Another situation that may arise is the evolution of the density matrix
when state-changing operation applies to only one photon. That is, when
the state |ψ〉 is transformed by operation T̂ on say photon 1, such that

|ψ′〉 = (T̂ ⊗ I2)|ψ〉, (3.196)

where I2 is the two-dimensional identity matrix. Equivalently, the density
matrix will transform

ρ̂′ = (T̂ ⊗ I2)ρ(T̂ ⊗ I2)†. (3.197)

Replacing Eq. 3.189 into Eq. 3.197 we get

ρ̂′ =
1

4

3∑
µ=0

3∑
ν=0

sµν(T̂ ⊗ I2)(σ̂µ ⊗ σ̂ν)(T̂ ⊗ I2)†, (3.198)

=
1

4

3∑
µ=0

3∑
ν=0

sµν(T̂ σ̂µT̂
†)⊗ σ̂ν , (3.199)

For Bell states (and consequently the relation 3.194) the latter equation be-
comes

ρ̂′ =
1

4

3∑
µ=0

sµµ(T̂ σ̂µT̂
†)⊗ σ̂µ. (3.200)

If we now replace ρ̂′ into Eq. eq:stokes2 to obtain the Stokes parameters of
the transformed state, we get

s′ij = Tr[ρ̂′(σ̂i ⊗ σ̂j)], (3.201)

=
1

4

3∑
µ=0

sµµTr[((T̂ σ̂µT̂
†)⊗ σ̂µ)(σ̂i ⊗ σ̂j)] (3.202)

=
1

4

3∑
µ=0

sµµTr[(T̂ σ̂µT̂
†σ̂i)⊗ (σ̂µσ̂j)] (3.203)
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Using trace property Eq. 3.131 in the latter equation yields

s′ij =
1

4

3∑
µ=0

sµµTr[T̂ σ̂µT̂
†σ̂i]⊗ Tr[σ̂µσ̂j] (3.204)

Using the cyclic property of the trace (Eq. 3.132) and the property of Pauli
matrices (Eq. 3.171), we get

s′ij =
1

4
sjjTr[σ̂iT̂ σ̂jT̂

†] (3.205)

= sjjMij (3.206)

where we used Eq. 3.182 in the last equation to replace in the Mueller matrix
element of the transformation of photon 1. Thus

Mij =
s′ij
sjj
. (3.207)

The meaning of this result is that we can get all Mueller matrix elements
from the two photon density matrix when we use a Bell state as the input
state. This is a form of non-local Mueller polarimetry.

The values of the non-zero Stokes parameters for each Bell state are shown
in Table 3.3. The degree of two-photon polarization must then be the degree

Table 3.3: Values of the non-zero 2-qubit Stokes parameters for each Bell
state.

Non-zero Φ+ Φ− Ψ+ Ψ−

s00 1 1 1 1
s11 1 1 −1 −1
s22 1 −1 1 −1
s33 −1 1 1 −1

to which the polarizations of the two photons is correlated. It is given by

DOP2 =
1

2

(
3∑

i,j=1

s2
ij − 1

)
(3.208)

Thus, it can be seen that DOP2 = 1 for all maximally entangled Bell states.
It can be seen that it is zero for any separable state.
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Exercise 45 The Mueller matrix for a 90-degree rotator is given by

M(Rπ/2) =


1 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 1

 .

A rotator placed in the path of a photon converts state Φ+ to Ψ−. Using
Table 3.3 and Eq. 3.207 show that the Mueller matrix is the one shown above.

3.7 Two Photons in Momentum Space

3.7.1 Hong-Ou-Mandel Interference

Consider two photons created by spontaneous parametric down conversion
are incident on a beam splitter. Photons 1 and 2 arrive at the beam splitter.

Figure 3.12: HOM experiment setup. Two photons produced by spontaneous
parametric down-conversion are redirected by fibers to a beam splitter. One
of the photons can be delayed or advanced relative to the other one. Detectors
measure the coincident events after the beam splitter.

The wavefunction for the photons as bosons has to be symmetric to the
exchange of photon labels. Thus, the initial state of the light is given by

|ψ〉i =
1√
2

(|x〉1|y〉2 + |y〉1|x〉2) (3.209)
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The matrix form of the two photon states in the momentum basis is:

|x〉1|y〉2 =

(
1
0

)
1

⊗
(

0
1

)
2

=


0
1
0
0

 (3.210)

and

|y〉1|x〉2 =

(
0
1

)
1

⊗
(

1
0

)
2

=


0
0
1
0

 (3.211)

The initial state is

|ψ〉i =
1√
2


0
1
1
0

 . (3.212)

The matrix for the beam splitter is

B̂ =
1√
2

(
1 i
i 1

)
⊗ 1√

2

(
1 i
i 1

)
=

1

2


1 i i −1
i 1 −1 i
i −1 1 i
−1 i i 1

 (3.213)

The final state after the beam spitter is

|ψ〉f = B̂|ψ〉i =
i√
2


1
0
0
1

 (3.214)

This final state involves the superposition of both photons going in the x-
direction with both photons going in the y-direction. Thus, there are no
coincidences recorded. This interference is due to both photons being indis-
tinguishable.

Let us analyze the situation where both photons are partially distinguish-
able and partially indistinguishable. The density matrix representation of the
photons in the initial state when both are indistinguishable is

ρ̂ind = |ψ〉〈ψ| = 1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 . (3.215)
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When both photons are distinguishable, then they are in a mixed state. The
two possibilities that are distinguishable are given by their respective density
matrices:

ρ̂xy = |x〉1|y〉2〈y|2〈x|1 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 . (3.216)

and

ρ̂yx = |y〉1|x〉2〈x|2〈y|1 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 . (3.217)

The mixed state is defined as

ρ̂dis =
1

2
ρ̂xy +

1

2
ρ̂yx =

1

2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , (3.218)

where the factors of 1/2 refer to the probability of occurrence of those pos-
sibilities.

We can set up a general state that is partially distinguishable state as

ρ̂g = pρ̂ind + (1− p)ρ̂dis (3.219)

where p is the probability that the photons are indistinguishable. The density
matrix of the final state is

ρ̂f = B̂ρ̂iB̂
+. (3.220)

One can use this last equation to verify the two extreme outcomes:

ρ̂f−ind = B̂ρ̂i−indB̂
+ =

1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 , (3.221)

where the outcome is consistent with |ψ〉f〈ψ|f of Eq. 3.214; and

ρ̂f−dis = B̂ρ̂i−disB̂
+ =

1

4


1 0 0 1
0 1 −1 0
0 −1 1 0
1 0 0 1

 . (3.222)



3.7. TWO PHOTONS IN MOMENTUM SPACE 59

The final state for the general case is

ρ̂gf =
1

4


1 + p 0 0 1 + p

0 1− p −1 + p 0
0 −1 + p 1− p 0

1 + p 0 0 1 + p

 (3.223)

The probability of detecting coincidences is

P = Tr[ρ̂gf ρ̂xy] + Tr[ρ̂gf ρ̂yx] (3.224)

Figure 3.13 shows the coincidence probability as a function of p. If we model

Figure 3.13: Calculated probability of measuring a coincidence (Eq. 3.224)
as a function of p.

the probability p by the overlap of the photon wavepacket of coherence length
lc, then a graph of coincidences as a function of the delay or shift in the
overlap in the amplitudes of the two photons, is shown in Fig. 3.14. The
photons can be thought of as given by an amplitude that can be modeled by
a Gaussian of width given by the coherence length of the light. The coherence
length is related to the bandwidth δλ, where λ is the center wavelength of
the photon, by

lc =
λ2

δλ
(3.225)

Thus delaying one photon relative to the other one produces a difference in
the overlap, yielding full interference (indistinguishability) for zero overlap,
and no interference (distinguishability) when the delay/advance is greater
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Figure 3.14: Calculated probability of measuring a coincidence (Eq. 3.224)
as a function of the delay in (overlap) in the photon amplitudes x. The
photons’ coherence length is lc.

than the coherence length. A scan of the delay gives rise to the Hong-Ou-
Mandel “dip” in the coincidence signal of the two detectors, as shown in
Fig. 3.14.

More Degrees of Freedom: Photon-Momentum-Polarization

In the HOM case we have two photons and two momentum states. We can
add the polarization degree of freedom as well. In the previous version, the
HOM interference is decided by the temporal distinguishability of the two
photons due to distinct arrival times of the photons to the beam splitter. We
can keep the temporal indistinguishability and make polarization to be the
distinguishing parameter. We do this by adding waveplates before the beam
splitter.

In the case of Fig. 3.12, one detail that was not mentioned is that the
fibers have to preserve the polarization, so in practice we use polarization-
maintaining fibers. We then place half-wave plates in front of the fiber en-
trance. Each photon now has polarization and momentum degrees of free-
dom. Foe example the state for the two photons incident to the beam splitter
with one with horizontal polarization traveling along x with the other photon
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with polarization oriented an angle θ traveling along y is:

|ψ〉i =
1√
2

(|x,H〉1|y, θ〉2 + |y, θ〉1|x,H〉2) (3.226)

The beam splitter operator is now

B̂3 = B̂ ⊗ Î ⊗ Î , (3.227)

where the second and third spaces are the polarization and photon modes.
Doing calculations by hand in this problem becomes laborious. Using com-
putational tools eases the effort. The final state is obtained by applying

|ψ〉f = B̂3|ψ〉i. (3.228)

The probability for obtaining coincidences, is obtained by

Pxy =
∑
i=H,V

∑
j=H,V

(
|〈x, i|1〈y, i|2ψ〉f |

2 + |〈y, i|1〈x, j|2ψ〉f |
2
)
. (3.229)

Interestingly, this elaborate calculation results in a simple answer:

Pxy =
1

2
sin2 θ, (3.230)

but it only underscores that distinguishability is the key to HOM interference.

3.7.2 Biphoton Interference

3.8 Continuous Variables: Time and Energy

Consider now the situation where two photons are produced in a setup such as
that of Fig. 3.15 An incident photon produces a pair of photons with energy
that add to the energy of the incident photon. They are in an entangled
state of energy

|ψ〉 =

∫
A(E)|E〉1|E0 − E〉2dE, (3.231)

where A(E) is the amplitude of producing a given pair of energies (E,E0−E),
and where E0 is the energy of the pump beam. This is an energy wavepacket.
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Figure 3.15: Experiment involving delayed choice.

Suppose that the uncertainty in the energy is δE. From the time-energy
uncertainty relation we have

δt ∼ h

δE
, (3.232)

which we can interpret as the temporal width of the wavepacket. Thus, a
large energy uncertainty implies a short temporal width, and conversely, a
small energy uncertainty implies a long temporal width of the wavepacket.
We can translate the temporal width to an actual distance

`c = cδt. (3.233)

This distance is also known as the coherence length of the light.
We now send one of the photons to an interferometer, while the other

eventually goes straight to a detector. We put filters F1 and F2 before sending
them to the detectors. The interferometer can be represented by the operator
Û acting on photon 1. If the coefficients of reflection and transmission of the
beam splitters are r and t, and if the path-length difference of the arms of the
interferometer is x, then the after the interferometer the state of the photons
is (un-normalized):

|ψ′〉 = Û |ψ〉 =

∫
A(E)rt(1 + ei2πEx/hc)|E〉1|E0 − E〉2dE. (3.234)

We then pass the photons through two filters with transmission func-
tions a1(E) and a2(E). Detectors following the filters complete an energy-
projective measurement into states

|ψ′〉i =

∫
ai(E

′)|E ′〉idE
′ (3.235)
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i = 1, 2. The detection probability is then given by

P = |〈ψ′|1〈ψ′′|2|ψ〉|
2 . (3.236)

Replacing the expressions for the states that are detected gives

P =

∫ ∫ ∫
dEdE ′dE ′′a1(E ′)a2(E ′′)A(E)

∣∣∣〈E ′|1〈E ′′|2Û |E〉1|E0 − E〉2
∣∣∣2 .

(3.237)
Note that there is no time dependence. The final probability is independent
of when the measurements are performed. This is similar to the famous
“spooky action at a distance” situation with polarization-entangled photons:
the outcome of the correlations is independent of the order in which the
measurements is made. The integral over the individual energy summations
are reduced due to the orthogonality of energy eigenstates

〈E ′|E〉 = δ(E ′ − E), (3.238)

and
〈E ′′|E0 − E〉2 = δ(E ′′ − E0 + E), (3.239)

giving rise to the following probability:

P =

∫
a(E)

∣∣rt(1 + ei2πEx/(hc))
∣∣2 dE, (3.240)

where a(E) = A(E)a1(E)a2(E0−E). If we make, for simplicity that a(E) =
1/(E2−E1) when E1 ≤ E ≤ E2, and 0 otherwise then the integral is straight-
forward to solve giving

P = 2RT

(
1 +

2hc

π∆Ex
sin

π∆Ex

hc
cos

2πEx

hc

)
(3.241)

where ∆E = E2 − E1 and E = (E1 + E2)/2. The above equation simplifies
to

P =
1

2

(
1 +

sinα

α
sin

2πx

λ

)
, (3.242)

where α = π∆Ex/(hc) and rr∗tt∗ = 1/4. Note also that

α =
πx

`c
(3.243)
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Thus, when x� `c we have sinα/α→ 1, so the probability is

P =
1

2

[
1 + sin

(
2πx

λ

)]
, (3.244)

with λ = hc/E, which corresponds to interference that varies with the path
length difference x. As x increases to the limit when x � `c , or α → ∞,
then sinα/α → 0, the interference disappears and the probability becomes
P = 1/2.

The setup of the apparatus of Fig. 3.15 has an interesting twist. First,
the light going to the two detectors has filters F1 and F2, one for each pho-
ton. The final bandwidth of the light is determined by the product of the
transmission curves of the two filters. Because the photons are detected in
coincidence, the bandwidth is effectively determined by the filter with the
narrower bandwidth. When x� `c the path-length difference is much larger
than the length of the wavepacket, and so the wavepackets do not overlap
in time when the light exits the interferometer. In the data of Fig. 3.16 the
length of the interferometer, x = ` + L, where L = 81 µm is fixed and ` is
scanned over a few wavelengths. In Fig. 3.16(a) the bandwidth of the filter
system is 40 nm resulting in a coherence length `c = 16 nm. One could also
say that in Fig. 3.16(a) the paths of the interferometer are distinguishable
because a timing experiment that would reveal the path taken by the light
(see insert in the figure). Conversely, in Fig. 3.16(b) the bandwidth of the
filter system is 1 nm resulting in a coherence length `c = 640 µm. This
is the limit when x � `c, where the probability amplitude wavepackets of
the photon going through the interferometer overlap (see insert). As conse-
quence, the paths are indistinguishable, and so there is interference. Thus,
the selection of the filter(s) determines whether the light interferes or not.
One can say that case (a) displays the particle aspect of the light, and case
(b) displays the wave aspect.

In the experiment one photon goes to a filter and detector immediately
after going through the interferometer, while the other one continues through
a long optical fiber to finally reach a filter and detector. To make this point
more dramatic, in the setup we locate the bandwidth-determining filter after
the long fiber, and thus delaying the filtering action. However, when the
delayed photon goes through the filter, the other photon going the interfer-
ometer has already been detected and no longer exists! Often when discussing
entangled photons, it is often said that detecting one photon collapses the
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Figure 3.16: Measurements of single-photon interference for a difference in
path length of about 81 µm. In (a) the paths are distinguishable and in (b)
the paths are indistinguishable. The Inserts show schematically the length
of the wavepackets for each case: 16 µm for (a) and 640 µm for (b), as they
exit the interferometer.

wavefunction, instantaneously projecting the state of the other photon. This
problem leads one to think that the delayed photon controls the bandwidth
of the photon going through the interferometer, thus constituting a back ac-
tion into the past. However, that is not so. Once the first photon is detected,
that detection projects the second photon into a state of the carries both the
wave and particle information. The delayed detection then projects the state
further selecting what type of information, wave-like or particle-like, is made
available.


